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Spectroscopy of an ensemble of molecules gives information about (differences of) eigenva- 
lues of the molecular Hamiltonian and "transition probabilities". All this information is 
encoded in the thermal non-pure state with density operator Da. No information is offered on 
the pure states of the actual individual molecules. In response theory, for example, a spectro- 
scopic experiment is described by an input-output equation which depends only on the thermal 
density operator D~ and not on a particular decomposition o f  D~ in to pure states. 

Spectroscopy of single molecules gives more information than just (differences of) eigenva- 
lues of  the molecular Hamiltonian and transition probabilities. One has, for example, an addi- 
tional stochastic ("migrating") behaviour of lines, which is not reconcilable with response 
theory. Also, the derivation of dissipative single-molecule behaviour cannot be done by usual 
response theory, since expectation values (of the output observable) with respect to a pure state 
cannot be measured without perturbing this pure state itself. Only averaging over the stochastic 
behaviour of many molecules results in the regular dynamics used in response theory. 

Here "single-molecule spectroscopy" is always meant to refer to the quantum joint system 
{single molecule & environment}, where the environment can, for example, consist of the 
matrix in which the single molecule is embedded or the quantum radiation field. The question 
"What  is the influence o f  the molecular environment?" will be an important background for the 
discussions in this paper, even when it is not explicitly mentioned and discussed. Hence all the 
questions posed below refer to "isolated" single molecules as well as to the joint system {mole- 
cule & environment}, even when they are only formulated for isolated single molecules. 

Single molecule-spectroscopy should finally give answers to questions like the following, 
always referring to pure states of individual molecules and not to the thermal non- pure state 

D~: 
• Superpositions of left- and right-handed states o f a  chiral molecule seem to be unstable un- 

der small external perturbations. What is the time necessary to decay into either a left- or a 
right-handed state? What  is the stochastic dynamics for such a decay? 

• Similarly, superpositions of states of different molecular isomers (having the same Hamilto-  
nian and the same thermal state) seem to be unstable under external perturbations. Or super- 
positions of states of a magnet having positive and negative permanent magnetization 
seem to be unstable under external perturbations. What  is the transition time between such 
unstable superpositions and stable states? The latter are usually not eigenstates of the molec- 
ular Hamiltonian in question. 
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• Which is the observable measured in a single-molecule spectroscopic experiment? The Ha- 
mJltonian or the dipole moment operator? Does an arbitrary initial state become an eigen- 
state of the molecular Hamiltonian (Bohr's point of  view) or an eigenstate of the dipole 
moment operator (von Neumann's point of view)? 

To look at these and other questions theoretically, decompositions of the thermal state D~ 
into pure states must be investigated. Any decomposition of D~ into pure states preserves the 
statistical results but gives a model for single-molecule spectroscopic behaviour. There are 
uncountably many different possibilities to decompose a non-pure state like Dt~ into pure states. 
Here the decomposition of the thermal state into eigenstates o f  the molecular Hamiltonian is 
not generally accepted, because eigenstates are, in many circumstances, unstable under small 
perturbations. 

For  a decomposition of the thermal state D~ into pure states it is neither compulsory to use 
orthogonal nor compulsory to use only countably many pure states (corresponding to a basis of 
the underlying Hilbert space). In the context of the Born-Oppenheimer approximation, for 
example, one might try to look for a general (non-orthogonal) decomposition which minimizes 
the dispersion of  the positions o f  the nuclei in the molecule. Here a different approach is presented 
using Jaynes'maximum-entropyprinciple applied to decompositions of thermal non-pure states 
into pure states: "Decompose thermal non-pure states into pure states in such a way that the 
resulting ensemble/Zmax of pure states has maximal entropy with respect to equipartition of 
pure states." Here "equipartition of pure states" is not equipartition of eigenstates, but equi- 
partition of all possible pure states. It is argued that the (uniquely determined) maximum- 
entropy ensemble ]Zmax describes a stable decomposition of D~ under small external perturba- 
tions. 

With respect to the stable maximum-entropy decomposition, unstable states such as the 
above-mentioned superpositions appear but with very low probability. A dynamical interpreta- 
tion of  the maximum-entropy principle is proposed. Though, at the present stage, life times of 
the abovementioned superpositions (or the time necessary for a quantum jump) cannot be com- 
puted, a martingale approach is sketched which allows to compute transition probabilities between 
arbitrary pure initial andfinal states (i.e., not restricted to eigenstates of the Hamiltonian). Inci- 
dentally, the choice of a stable decomposition is related to the Born-Oppenheimer approach: 
certain superpositions are "excluded" by taking "localized" eigenstates (existing in a certain 
minimum of the BO-potential). 

The present approach is checked for the quantum-mechanical Curie-Weiss model of  a mag- 
net. The question there is how "fast" the specific magnetization gets a classical observable with 
increasing number o f  spins; how "fast" the superpositions of states with opposite permanent 
magnetization "die out" with increasing number of spins. Heuristically, one may expect that a 
magnet consisting of 4 spins does show quantum behaviour, whereas a magnet consisting of  
1000 spins already shows a partially classical behaviour. Hence the probability density to find a 
particular expectation value of the specific magnetization operator rh may be expected to con- 
centrate more andmore at the two values -t-m~ for positive and negative permanent magnetiza- 
tion (if the temperature is below the Curie point). This is indeed true, and it is shown that this 
concentration process can be described by an entropy in the sense of fluctuation theory in statis- 
tical mechanics (i.e., large- deviations theory). Similarly to this magnetic example, it would be 
interesting to know how "fast" certain superpositions (e.g., of handed states) disappear in a 
sequence of molecular species like {monodeuteroaniline ~ N H D T  ~ naphthazarin 

• .. --~ aspartic acid} with decreasing level splitting between the ground and first excited 
state. It is argued that usual statistical (algebraic) quantum mechanics cannot describe this 
"soft phase transition", because it imposes too excessive conditions on symmetry breaking and 
classical structures (arising only in the limit o fin finitely many degrees of freedom). 

The general idea is the following: It is tried to extract information about individual molecular 
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behaviour from the statistical information encoded in the thermal state Da (via the stable max- 
imal entropy decomposition of DB). The resulting theory on the level of individual pure states 
is stochastic and nonlinear and can be taken as a starting point to interpret single-molecule 
spectroscopy from a quantum-mechanical point of view. In this theory, quantum jumps are 
replaced by a continuous dynamics in the space of all molecular pure states and the projection 
postulate is "derived". Correspondingly, on the experimental side, single-molecule spectros- 
copy gives more (and in particular stochastic) information than encoded in the thermal density 
operator. The hope is that experimental work in single-molecule spectroscopy will allow to 
characterize stochastic time-evolutions of single molecules and allow to check the theoretical 
ideas exposed in this paper. 

1. A m m o n i a - t y p e  molecu le s  

The superposi t ion principle is one of  the most  important  concepts of  quan tum 
mechanics: Starting f rom two arbitrary state vectors ff'l and if'2, the wave function 

£1k~l "4- C2~ff2 (1) 

is again a legitimate wave function of  the system in question. Here Cl and c2 are 
appropr ia te ly  normalized complex scalars. 

L e t  me try to illustrate the superposit ion principle using ammonia  and ammo-  
nia-type molecules. To this end, consider fig. 1: The double-minimum function 
there is (a sketch of) the Born-Oppenhe imer  potential  for the electronic ground 
state o f  ammonia .  It is an energy vs. an internal inversion coordinate  diagram. 
Every value of  the inversion coordinate  corresponds to a part icular nuclear frame 
of  ammonia .  The two minima, for example, correspond to pyramidal  structures, 
whereas the max imum corresponds to a planar structure. At  first sight, ammonia  
molecules roughly keep their traditional chemical structures even in a quan tum 
description. The pyramidal  forms, for example, are described by the rather peaked 
(non-stat ionary)  wave functions ~L and ~R, and therefore admit  at least an approx-  
imate nuclear frame. As soon as we consider superposit ions of  ~L and if'R, things 
change dramatically.  Look  at the superposi t ion ~+ :~---~22(k~L-I-'~R), which 
describes the proper  ground state of  ammonia ,  and at the superposi t ion 
if'- := ~ (ff'L -- ~R), which describes the first excited state of  ammonia .  Inciden- 
tally, the transit ion between these two states is the ammonia  maser  transit ion 1. 
Wi th  respect to these s tat ionary states, a single ammonia  molecule does not  have a 
nuclear frame any more: The nitrogen and hydrogen nuclei do not  sit at fixed posi- 
tions; only probabi l i ty  distributions for their positions can be given, just  as is usual 
with electrons. 

Figure 2 is a sketch of  the ground state of  ammonia.  Though still drawn, the 

1 Actually, if the "handed" states are defined as superpositions of the eigenstates, i.e., the other way 
round, one could discuss using coefficients 1 and i instead of ± 1. 
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Fig. 1. Illustration of the superposition principle using ammonia and ammonia-type molecules. 

nitrogen-hydrogen bonds lose their meaning in this context. Hence ammonia does 
not admit a nuclear frame, at least with respect to the states O+ and O_. 

Let us now have a look at other molecules of similar type: Monodeuteroaniline 
[106], naphthazarin and related species [25,32,67,78,89-1,114,115,118,134,135] or 
properly chiral molecules, such as sulfoxides [65,79], sugars and amino acids. They 
all have an internal inversion coordinate and the same underlying structure of 
states, namely two stationary states O+ and O_, and nonstationary states OL and 
OR, which are interconverted by a tunneling process (very slow for chiral mole- 
cules). In the case of naphthazarin, the inversion coordinate corresponds to a 
(simultaneous) move of the hydroxylic hydrogen atoms to the respective neigh- 
bouring carbonyl groups. 

Though for all these different molecular species one can formally write down 
the wave vectors O+, O_, OL and OR, their particular situation differs dramatically: 
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Fig. 2. Sketched distribution of the nuclei in the ground state of an ammonia-type molecule. 

For properly chiral molecules (in the sense of traditional chemistry) the states if'+ 
and g'_ have never been observed experimentally; only handed states seem 
[40,41,104,105] to exist. For naphthazarin the situation is not entirely clear (to me, 
at least), whereas for monodeuteroaniline and ammonia all four mentioned states 
are accessible experimentally [75]. 

The main difference between the mentioned molecular species is the different 
level splitting (i.e., the energy difference (E_ - E+) between excited and ground 
state, see table 1). And indeed, heuristic use of quantum-mechanical perturbation 
theory [112] tells us that "something dramatic" might happen when the level split- 
ting is sufficiently small. It would be quite interesting to have a whole series o f  dif- 
ferent ammonia-type molecules interpolating between ammonia and chiral 
molecules. For the species in such a series the questions would then be: 

Table 1 
Ammonia-type molecules. 

Barrier Level splitting 

Monodeuteroaniline [106] 
Ammonia 
Naphthazarin [134] 

0/H 0 

5.5 kJ mo1-1 600 J mo1-1 
23.9 kJ mol - l  9.5 J mo1-1 

..~50 kJ mo1-1 ~0.02 J mo1-1 

Aspartic acid ~ 140 kJ mo1-1 ~ 10 -60 J mol -I 
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• Does the spectrum show the "maser transition"? 2 

• Can the proper (stationary) ground state be prepared experimentally 
[40,41,104,105,109]? 

• Assuming that  the proper (stationary) ground state exists: is it unstable under 
small external perturbations and how quickly does it decay into the "handed"  
(or other) states? Can the wave function of  the proper ground state (and other 
states) be determined experimentally (up to a phase factor) by a protective 
measurement  in the sense of Aharonov, Anandan and Vaidman [1 ]? 

• Is there a kind of phase transition in the series of  molecular species {monodeu- 
teroaniline ~ -.- --+ asparagic acid} in table 1? 

• Handed states are not eigenstates of the molecular Hamiltonian,  i.e., non- sta- 
tionary. What  is the role ofeigenstates in spectroscopy? 

However the situation may be: there is at least some indication that an approxi- 
mate classical structure appears when the level splitting decreases. Note  that  all 
the ment ioned species are small molecules. Classical or approximate classical struc- 
tures are therefore not restricted to macroscopic situations. 

Chirality is surely not  the only example which can be interpreted as an (approxi- 
mate) classical structure. Consider, for example, circular D N A  molecules with 
identical monomer  sequence, which are differently knotted [125,128]. Can such dif- 
ferently knotted states be superposed? Does there exist a state bearing analogy to 
the ground state of ammonia? Actually, chemistry abounds with classical struc- 
tures: The nuclear frame and the isomeric type of a molecule (see section 4), or tem- 
perature [132] and chemical potential [85] of a substance are further examples. 

Or consider a magnet  composed of a large but finite number of spins: Can one 
prepare a superposition of states with opposite magnetization? How fast would 
such a stationary state decay into its components? Does a kind of phase transition 
arise with increasing number  of spins? What happens with the spectrum when a 
classical structure appears? 

A note in between: "Approximate classical structure" is to say that the superposi- 
tion principle still holds universally, but certain "forbidden" superpositions (as 
between differently handed states) are unstable and decay quickly into their compo- 
nents. Hence an approximate classical structure does not break the superposition 
principle. Therefore an approximate classical observable is not  strictly equivalent 
to a superselection rule as in algebraic quantum mechanics [33,34,99,117]. Actu- 
ally, in algebraic quantum mechanics one uses limits (number of particles --+ oo; or 
mass --+ oo, or volume --+ oo, or nuclear molecular masses ~ cx~) in order to get to 
(strict) classical observables or superselection rules. It is interesting and embarras- 

2 Many experimental problems come in at that point. The transition can, for example, be dipole-for- 
bidden as with naphthazarin. In this case, related P-, Q- and R- transitions could nevertheless be 
visible. 
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sing that the superposition principle holds universally before the limit (i.e., for large 
but finite number of degrees of freedom, for large but finite volume or mass, or 
for large but finite nuclear molecular masses), whereas the superposition principle 
is restricted after the limit. Therefore, in contrast to previous papers of the author 
[8,11 ], in the present paper the number of degrees of freedom is always taken to be 
finite, though perhaps large! 

2. Th e  d e c o m p o s i t i o n  o f  a n o n - p u r e  state into  pure states  is n o t  u n i q u e  

It has been tacitly assumed in this paper that pure quantum states make sense 
for an individual quantum system 3. This point of view is suggested by investigations 
like that of Raggio [110], and more and more accepted [23,28,57,59,60,80,100, 
101,133,150]. For chemists, this way of talking about micro- and macrosystems as 
individual entities is quite acceptable: They usually do not change their interpreta- 
tion when speaking about small molecules, macromolecules, crystals and the con- 
tents of an Erlenmeyer flask. 

However, attention should be paid to the fact that most quantum-theoretic 
results refer to a statistical setting in terms of non-pure states. Since non-pure states 
cannot be uniquely decomposed into pure ones, there is no standard way of refor- 
mulating such quantum theoretic results for individual systems (i.e., in terms of 
pure states). 

The nonuniqueness of decompositions is illustrated in a simple case, namely for 
a thermal non-pure state ofa two-levelsystem with density operator 

e -3E+ D+ + e -;sE- D_ 
D~ = Tr(e_~E+D+ + e_~E_D_) (2) 

Incidentally, thermal states (= 3-KMS states) can be defined as being those states 
which satisfy a certain stability requirement [33,117] under perturbations and the 
definition via Boltzmann occupation numbers is taken here only for simplicity. The 
states of a two-level system correspond to the points of a sphere in three-dimen- 
sional space (see appendix 1 and fig. 3). In particular, pure states correspond to 
points on the surface of the sphere, whereas proper nonpure states (with non-idem- 
potent density operators) correspond to inner points of the sphere. The density 
operator D~ can, of course, be decomposed into the eigenstates ¢'+ and ~_ (see left 
part of fig. 3). However, entirely different decompositions into two non- orthogo- 
hal states ~1 and ~2 are possible (see middle part of fig. 3). Finally, it is not all com- 
pulsory to decompose into two states: All possible pure states of the two-level 
system may take part in a decomposition olD3 

D~ = fs~ [~o,~)(~o,~[f(O, ok) sinO dO d~ 
47r ' (3) 

3 Even more: it has been assumed that there is a 1-1-correspondence between pure statistical states, 
on the one hand, and individual states, on the other. 
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II 

Fig. 3. A non-pure state (with density operator D) can be decomposed in many different ways into 
pure states. Here the situation is sketched for 2 x 2- matrices. The left part of the figure shows a 
decomposition of a density operator D into its eigenstates. The middle part of the figure shows a 
decomposition of D into two non-orthogonal states. The right-hand part of the figure illustrates the 
decomposition of D into all possible pure states (of a two-level system). The probability density of  

pure states arising in this decomposition is indicated by the shading. 

(using spherical coordinates and Dirac bra-ket notation). Such a decomposition is 
sketched on the right-hand side of fig. 3, the probability densi tyf  = f(tg, ~) corre- 
sponding to the shading in the figure. Summarizing: there is a big difference between 
non-pure states and ensembles of pure states. Any ensemble of pure states gives 
rise to a unique non-pure state, but not conversely. 

R e m a r k  

A "mixed" state can have different meanings [17,48]: It can either be a shorthand 
description of an ensemble of pure states, or arise as restriction of a pure state 
(e.g., of the joint system {molecule & radiation field}) to a smaller part (e.g., the 
molecule). In the latter case, it does not necessarily make sense to decompose the 
"mixed" state into pure states (or only after an appropriate dressing transforma- 
tion). Here the term "mixed" state is always replaced by non-pure state. 

3. Der iving Fermi ' s  Go lden  Rule  f rom statistical quantum mechanics 

It is not easy to keep track of the differences between statistical and individual 
settings of quantum mechanics. As an illustrating example let us consider Fermi's 
Golden Rule for the transition probabilities between eigenstates of the molecular 
Hamiltonian. Its derivation to be reviewed here is based entirely on statistical quan- 
tum theory in terms of non-pure states (density operators). The keyword in the 
present context is (linear) response theory [54,74,103]. 

Starting point is some dissipative dynamics as, for example, the Karplus-  
Schwinger dynamics specified by the differential equation 
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1 
D(t) =-~[Ho,D(t)] - F{D(t)  - D~} , t>>.O, (4) 

Here the constant F determines the dissipation (and finally the line width in the 
spectrum). The solution D(t) of the Karplus-Schwinger equation converges to the 
thermal state D~ = exp(-~Ho) /Tr(exp(- /3Ho))  (i.e., the/3-KMS state [33]) for 
large times t. 

In an experiment, an external perturbation (e.g., an electromagnetic input) b(t) 
is applied, changing the Hamiltonian H0 to 

H(t)  = Ho - b(t)B.  (5) 

Here B could, for example, be the dipole moment operator, whereas the scalar func- 
tion b could be a sine input, b(t) = sin(wt), or an appropriate pulse. Let us now 
expand the perturbed Karplus-Schwinger equation in powers of the perturbation 
b(t)B: 

D(t) = D(°)(t) + O(1)(t) + D(2)(t) + - . . ,  (6) 

1 [H0, (D(°)(t) + . . - ) ]  - F{(D(°)(t) + . . . )  - D~}. (7) + . . . )  = 

For a relatively small external perturbation b it is sufficient to consider the linear 
terms D (°) (t) and D (1) (t). Taking DZ as initial state, one arrives at 

D ( ° ) ( t )=Dz ,  t > 0 ,  (8) 

D (11 (t) = -~ e - r ' e  -i 'm/h [-b(t)B,  D~]e +i,m/h dr .  (9) 

If we take the output of our system to be the linear part a (1) (t) of the expectation 
value of some operator A 

aO)(t) = Tr(D(1)A), (10) 

we end up with a linearized input-output system: The input is given by b(t) whereas 
the output can be brought into the form 

a(1)(t) = 4~AB('C)b(t-- T) dT (11) 

with the integral kernel 4~AB being 

qSAB(T ) clef h Tr(D~[e-iTH°/hAe+irH°/h'B])e-Fr " (12) 

The linearized input-output description (11) for a spectroscopic experiment is 
extremely simple and can easily be extended (by adding nonlinear terms, if the input 
b is taken to be large). Furthermore, it gives enough theoretical background for a 
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spectroscopist/engineer who sets up the actual experiment. Incidentally, the inte- 
gral kernel ~As can easily be determined experimentally as pulse-response to the 
• d e t "  
input b(-r) = 6('r). The spectrum (in the conventional sense) is the Fourier trans- 
form of~,4B. 

Example 
In a simple model of nuclear magnetic resonance the Hamiltonian of the unper- 

turbed molecule is given by H0 = - f2 -  Sz, where {2 = g(1 - cr)Bo, Bo is the static 
magnetic field in z-direction, g the gyromagnetic constant of the respective nucleus, 
a << 1 some screening factor, and Sz the spin operator in z-direction. The perturba- 
tion in x-direction is described by V(t) = -b(t)Sx, where b(t) is some input function 
[e.g., proportional to a sine function or an appropriate pulse]. The response meas- 
ured in the x- or y-direction is essentially the expectation value of Sx or Sy, 
respectively. 

Now note the following important fact: The pulse response ~ depends only on 
the thermal state D# and not on a particular decomposition of D;~ into pure states! 
Neither quantum jumps nor any other detailed dynamics on the pure-state level are 
necessary to describe a spectroscopic experiment in this statistical formalism. Con- 
versely, determination of the spectrum (i.e., the Fourier transform of ~As) does 
not tell us in which particular pure state (if any) the molecule under discussion actu- 
ally is! Only information about the thermal density operator D# can be extracted 
from the experimental results. 

Though decompositions of the thermal density operator D# (into pure states) 
do not play a role in this statistical formalism, one may choose some particular 
decomposition. One may, for example, consider the spectral decomposition of D# 
into its eigenstates. The eigenstates of D# coincide with the eigenstates ff'n of the 
unperturbed Hamiltonian H0, 

Horn =EnkO,, (~,[ff~m) :~nrn, n , m =  1,2,- . .  (13) 

In order to get to Fermi's Golden Rule, one computes the average work ~r per sec- 
ond absorbed or emitted by the system (i.e., makes a power balance). To that end, 
the pulse-response ~BB is needed (input- and output operators B and A are identi- 
cal). Expressing ~BB in the basis (13) leads to 

l -Ft • ,B(r) = ~e ~ - - ~ p n { e i W ~ t - - e i ° ~ m n t } K k D n l B k ~ r n > l  2 . (14) 
n r n  

def  (Ern En) /h  a r e  the fre- Here p, are Boltzmann occupation numbers and w,,n = - 
quencies for transitions between the eigenstates. At the present stage, these "occu- 
pied states" and "transitions" are virtual occupied states and virtual transitions, 
because in the original result (11) neither transitions nor any other dynamics of 
pure states played any role (see section 8 below). 
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The average power N exchanged between measuring device and molecule 
(depending on the frequency w of the input and including a limit F--~ 0) can then be 
expressed in the following way [103]: 

n m 

~dmn > 0 

7r 
- p n  I( nlg m)l - ( 1 5 )  

n m 
w n m > 0  

The first part of this formula refers to absorptions, the second to emissions. Inter- 
preting eq. (15) again in the same "virtual" way as before, the obvious structure 
Boltzmann factor  x transition rate x energy leads to transitions rates 

[ (~n l~m)12~(w-  Iwnm[), (16) W(n--*m)  = ~--~ 

which is Fermi's Golden Rule [53]. 
It might well be that a detailed investigation of individual quantum processes 

shows that this sort of setting is not only virtual but also "true" (cf. section 8). If 
some initial state decays into a continuum of states [27,61], for example, decay 
probabilities can be rigorously derived. In the general situation considered here, 
Fermi's Golden Rule is one of many possible interpretations of the input-output 
result (11) in individual diction. In eq. (11) neither transitions nor transition prob- 
abilities play a role. Using a different decomposition of the thermal density opera- 
tor (i.e., not the spectral one) will lead to a completely different picture on the 
pure state level. 

Hence Fermi's Golden Rule gives conditional probabilities in the following 
sense: Under the condition that one interprets spectroscopy by jumps between eigen- 
states of the unperturbed Hamiltonian H0, the transition probabilities are given 
by eq. (16). In particular, initial and final states of a quantum jump are always (sta- 
tionary) eigenstates of the unperturbed Hamiltonian 1-1o. 

Summarizing: Spectroscopy of ensembles of molecules can only give information 
about the thermal non-pure state D~ and not about the decomposition of D~ into 
pure states. Therefore one has a certain freedom in decomposing the thermal non- 
pure state into pure states. One could, for example, decompose the thermal state of 
a molecule into (non-stationary) pure states in such a way that the nuclei are loca- 
lized as much as possible. Though this proposal is not worked out here, it gives 
some feeling for the approach of the present paper: Starting from the statistical ver- 
sion of quantum mechanics (in terms of density operators), it is tried to get to a 
best estimate of pure state behaviour (here pure states are not necessarily thought 
to be eigenstates of the molecular Hamiltonian). This estimate of pure state behav- 
iour can then be taken as starting point to discuss spectroscopy of single molecules. 
In single-molecule spectroscopy more information than just eigenvalues and transi- 
tion probabilities can be obtained. 
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4. Spectroscopy of single molecules 

Looking at the status of experimental techniques without prejudice, one can 
only be amazed at the fantastic achievements reached there. It is almost a miracle 
that experiments with single (or few) photons [20,21,66] and single (or few) mole- 
cules or ions [24,86,116,137] can actually be done. 

The theoretical interpretation of these experiments is on an extremely sophisti- 
cated level. It is surprising that often single-atom experiments can be interpreted by 
the traditional quantum-mechanical formalism (including the projection postu- 
late) [39] or even by completely classical explanation schemes [113,152]. 

The present paper is an attempt to understand why these explanations work so 
surprisingly well. To this end, let us try to use the (linear) response theory of sec- 
tion 3 for single-molecule spectroscopy. Then an important point cannot be 
accepted any more: In eq. (10) it was implicitly claimed that the output observable 
A can be measured without disturbing the state of the system itself This would cer- 
tainly be nonsense if the actual state were unstable, but could be accepted if the pure 
state in question (or an ensemble of pure states) were stable under a small external 
perturbation. In the statistical approach (where the expectation value of the ther- 
mal non-pure state D~ is concerned), one can be quite confident that stability is no 
problem. For single-molecule spectroscopy (described in terms of pure states) the 
situation is very different: arbitrarily chosen pure states are changed during a 
"measurement" and hence it is important to have stable states; or stable ensembles 
of pure states. 

Even with stable states or stable ensembles of states one must be prepared to 
get a stochastic behaviour (see section 8): To get an impression, the very nice and 
concise paper by W.P. Ambrose and W.E. Moerner [18] (cf. [43,62,63,81-84, 
88,97,98,141,142]) is recommended. Ambrose and Moerner investigate pentacene 
substitutional impurities in a p-terphenyl crystal. Depending on the particular 
orientation of the pentacene impurity, fluorescence excitation spectroscopy gives 
rise to varying peaks in the spectrum. The homogeneous line width of individual 
pentacene defects is about 7.5 MHz, whereas the inhomogeneous line width is 
about 2-42 GHz. For single-molecule spectra, the laser used may be tuned far into 
the wings of the inhomogeneous line, where the number of defects per homoge- 
neous width is less than one, that is, where non-overlapping individual pentacene 
defects may be found (if the overall concentration of pentacene defects is low 
enough, approximately 6.6 x 10 -8 mol mol-1). For individual "defects of class II", 
the position of the line differs from scan to scan, changing some few hundreds 
megahertz. This "spectrally migrating, stochastic" behaviour of class II can be 
explained the following classical way: A single pentacene molecule in the p-terphe- 
nyl matrix will be influenced by the surrounding matrix molecules. Hence depend- 
ing on this particular influence (e.g., the particular occupied eigenstates of the 
neighbouring molecules) the level splitting of the pentacene molecule will change 
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and lead to different spectroscopic lines. The pentacene molecule is a kind of probe 
testing different environments in the solid crystal. 

This is a very useful interpretation, since it works almost perfectly well 
[18,152], even in more complicated cases [151]. It is called classical, because the 
influence of surrounding molecules onto the single pentacene defect is taken into 
account only through changes in some parameters of the pentacene molecule, e.g., 
changes in the level splitting of a certain spectroscopic transition of pentacene. 
Only the pentacene defect itself is treated quantum-mechanically. In a full quan- 
tum-mechanical description of the joint system (pentacene molecule & envi- 
ronment ofp-terphenyl molecules} things change dramatically, because the states 
of this joint system are not necessarily product states. The composition rule for 
joining pentacene and p-terphenyl molecules is then quantum-mechanical and not 
classical as before. In such a description, the thermal non-pure state D~ would refer 
to the mentioned joint system and not to the pentacene molecule alone. One could 
then, of course, try again to start with a response theory. The problem with such a 
quantum-mechanical explanation using response theory is that stochastic behav- 
iour cannot easily be incorporated [136]. This stochastic behaviour (in the experi- 
ment of Ambrose and Moerner) is a consequence of the consideration of single 
molecules and "averaged out" for an ensemble of molecules. Anyway: Spectros- 
copy of single molecules (coupled to some environment such as a matrix of neigh- 
bouring molecules and/or  coupled to the radiation field) gives more information 
than just (differences of) eigenvalues and transition probabilities. 

Quite generally, the dynamics on the level of density operators is regular, 
whereas the dynamics on the pure state level can be stochastic and nonlinear (see 
section 8) [13,14,57-59,100-102]. Averaging over a particular stochastic dynamics 
on the pure state level gives back the regular density operator dynamics [136]. 
Hence statistical quantum mechanics (in the sense of density operators) can give a 
picture which is very different from individual-statistical quantum mechanics 
(using pure states). Only the latter individual formalism (see section 5) says some- 
thing about the behaviour of individual single quantum systems. Single-molecule 
spectroscopy, in particular, cannot be discussed in the usual quantum formalism 
(in terms of density operators). 

Here "single-molecule spectroscopy" is always meant in the sense spectroscopy 
of the quantum joint system (single molecule & environment}. The environment 
could, for example, consist of the radiation field or the matrix in which the single 
molecule is embedded (or both). The question "What is the influence of the molec- 
ular environment.~' [8-12,55,56,95,109,119,120,129,130,139,140,143-149] will 
always be important background for the discussions in this paper, even when it is 
not explicitly mentioned. Hence all the questions posed below refer to "isolated" 
single molecules as well as to the joint system (molecule & environment}, even 
when they are only formulated for "isolated" single molecules. A proper discussion 
of the influence of the molecular environment is difficult and not intended here. A 
keyword would be: dressing procedures [22]. 
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Starting from an entirely quantum-mechanical situation, it would be interesting 
to know how classical structures arise and why classical viewpoints are so success- 
ful even in spectroscopy of small single molecules. The result of this paper will be 
that the requirement of stability (of decompositions into pure states) gives rise to 
classical structures. In this and the following sections this point of view will be 
developed in a leisurely way. 

The following question serves as a starting point: "What happens to a molecule 
during spectroscopic measurement and which role is played by the eigenstates of 
the molecular Hamiltonian?" There are essentially two differing points of view pos- 
tulating what happens to a molecule during measurement: 

Starting from an arbitrary initial state, the molecule is transformed into an ei- 
genstate of the unperturbed molecular Hamiltonian H0. Transitions between 
these eigenstates occur with transition rates given by Fermi's Golden Rule (16). 
Here this will be called the Bohr-Einsteinpoint of view. 

Starting from an arbitrary initial state, the molecule is transformed into an "ei- 
genstate" of the coupling operator (which was called B in section 3). Here this 
is called von Neumann's point of view. The term "eigenstate" (of the coupling 
operator) has been put into marks, since the spectrum of the coupling operator 
is usually continuous and not discrete. 

Von Neumann's point of view is usually taken when the quantum measurement 
process is discussed in detail, replacing quantum jumps by a quantum diffusion of 
pure states [38,59,60,100,101,150]. For a two-level molecule such a quantum diffu- 
sion can be visualized on the surface of the sphere in three-dimensional space (see 
fig. 6): If the Hamiltonian of the two-level system is, for example, proportional to 
~1, and the dipole moment operator given by B := or3, an initial (pure) state "walks" 
to the poles of the sphere which correspond to eigenstates of or3. Von Neumann's 
point of view is quite plausible, since the "only" influence from the experimenter 
comes in via the coupling operator B (at least in the linear response scheme). 

The Bohr-Einstein point of view, on the other hand, is usually taken in spectros- 
copy. Fortunately, it is surprisingly simple and leads quickly to interesting results. 

The two points of view cannot easily be reconciled. With respect to the Bohr- 
Einstein point of view it is the molecular energy which is "measured"; with respect 
to von Neumann's point of view it is the dipole moment which is "measured". It is 
therefore legitimate to ask what happens to a molecule during spectroscopic measure- 
ment? As shown in section 3, one cannot answer this question experimentally by 
usual spectroscopic methods (applied to many molecules): Only the spectrum itself 
(i.e., transition frequencies and transition probabilities) can be determined, but 
not the actual states of the investigated molecules. 

Let us therefore postpone this problem to section 8 and ask the question "in 
which pure state is a molecule?" in a slightly different context, replacing for the 
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momen t  the molecule by one litre of  water 4 (which surely could be investigated by 
spectroscopic means). The non-pure thermal state 5 for this litre of  water  will again 
be called D~ and one might well expect, that  the linear response theory of  section 3 
works. The question now is: " In  what pure state is this litre of  water really?" As 
far as these questions are concerned, there is no principal difference between a sin- 
gle molecule and a single litre of  water. The main reason for taking such a "s t range"  
example is just  to make  clear that  we deal with one single system (being in a pure 
state) and not  with an ensemble in the sense of  Gibbs (in particular, one should not  
think of  the water  as an ensemble of  water molecules; the water molecules interact 
strongly! Also the pure state in question refers to the litre of  water as a whole). 
Hence here the raison d '&re for the non-pure thermal state D~ is our limited knowl- 
edge about  the (unstable, quickly changing) pure state of  the water  system. Hence 
we actually deal with a kind of  ensemble in time (since the pure state changes). 

N o w  again: What  is the pure state of  a litre of  water? The answer comes f rom 
an appropriate  decomposit ion of  the thermal state with density operator  D~ into 
pure states, 

Tr(TD~) = [ ~(T)#(ddp). (17) 
Ja 11 pure states 4) 

Here T is an arbi t rary observable of  the litre of  water and q~(T) is the expectation 
value of  T with respect to the pure state ~b. Every pure state o f  the system can be 
represented by some state vector ~P~ (where the phase is only fixed up to some com- 
plex number  of  modulus  1) by 

qS(T) = <#,IT#,>, (18) 

and vice versa 6. The probabili ty to find a pure state in some set of  S of  pure states 
is given by #(S) (hence/.t, in mathemat ical  terms, is a probabili ty measure).  Equa-  
tion (17) corresponds precisely to the decomposit ion in eq. (3). There the measure  
is given byf( tg ,  q~) sin t9 dO ddp/47r and the probabili ty to find the pure state in the 
set S o f  pure states (S is some part  of  the surface of  the sphere) is given by 

f s f (O dp) s in0 dO d~ (19) 
47r 

The more  "compl ica ted"  way of  formulat ing eq. (17) is only due to the fact that  
here one has no simple parametr izat ion of  the pure states (as by spherical coordi- 
nates). 

4 For this example, the Hamiltonian and the respective thermal state D~ refer to all molecules in the 
litre of water and their interactions. The translational energy of the centre of mass has been sepa- 
rated. 

5 The set of all (not necessarily pure) states and the set of density operators are in 1-1 correspon- 
dence. 

6 This is true if an irreducible representation of the observables is chosen, which is the usual 
situation. 
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The important point is: As illustrated in section 2, the decomposition (17) is not 
unique. Let us, for example, choose the spectral decomposition of D~ into (station- 
ary) eigenstates (see eq. (13)), 

Tr(TDe) = ~-~p,<~,lT~n>.  (20) 
n 

If this decomposition is only used as a mathematical tool to investigate the density 
operator, e.g., compute transition probabilities, one does not have any conceptual 
problems at all. But i f  it & taken as physically relevant, i.e., if the litre of water is 
thought to actually be in one of the eigenstates k~n with probability pn, it wouldmean 
that one litre o f  water is always in a stationary state. Physical intuition tells us that 
this is absurd: "Water molecules move and hence a litre of water is never in a sta- 
tionary state." 

The concept of "moving water molecules" is, of course, a classical one! Hence 
the whole argument is slightly inconsistent, since we start with a quantum descrip- 
tion and would like to derive (approximate) classical behaviour. Hence here the 
final desired result is already used in a heuristic way. 

Let us now leave the far-fetched example of water and turn back to molecules. 
Again there is no a priori reason to expect a single molecule (the translational 
energy being separated) to be in eigenstates of the underlying molecular Hamilto- 
nian. Also a spectroscopic measurement does not necessarily lead to eigenstates of 
the Hamiltonian (see the discussion above on the Bohr-Einstein vs. the yon Neu- 
mann point of view). 

Usually, eigenstates of some Hamiltonian are rather unstable under external 
perturbations [17] and therefore replaced by coherent states [93] or "localized 
eigenstates" as in a Born-Oppenheimer description. These descriptions are more 
stable under small external perturbations. To give an example: When the surface of 
a solid is observed with a raster tunnel microscope (which is an observation instru- 
ment but also an external perturbation), one does not expect to see molecular eigen- 
states, but wave packets. Here we try to obtain a more general understanding of 
stability of pure states, which also gives an alternative approach to decoherence, 
coherent states and the Born-Oppenheimer scheme. At the present stage, the parti- 
cular sort of the external perturbation (electromagnetic or gravitation field, colli- 
sions with neighbor molecules, etc.) is not taken into account. 

Illustrating this facts from different points of view one can show at the same 
time the ingenuity o f  the Born-Oppenheimer idea of  a nuclear structure: Consider a 
molecule with internal Hamiltonian H0 (the kinetic energy of the center of mass 
being subtracted). Let, furthermore, I denote the unitary operator which imple- 
ments space inversion 

lgJ (q l , ' " ,  qL; QI, Q2,""", Qu) %f ~ ( - q l , " " " , - q L ; -  Q1, - Q 2 , . . - , -  Qu) .  

(21) 
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Here the q's are electronic coordinates and the Q's are nuclear coordinates. If  the 
Hamil tonian H0 does not  contain the weak neutral current terms [107,108], it is 
invariant under space-inversion, i.e., 

IHo I-1 = Ho. (22) 

Then the eigenstates On of H0 (see eq. (13)) can be chosen to be symmetry- 
adapted, 

IOn = -t-On, n = 1,2, 3 , . - . ,  (23) 

and therefore will always fulfill 

( O n l a j O n )  = (IOnJajlOn) = (On[I-1OjlOn) = (On[ -  ajOn) = O, 

j = 1 , 2 , . . . , M .  (24) 

This is quite strange, since then 

• a nuclear molecular frame does not  exist, 

• different isomeric molecular forms do not  arise, 

• and a sequence of  monomers  in a macromolecule does not  make sense, 

since nuclear frame, isomerism and sequential structure in a macromolecule need 
(at least approximately) localized nuclei, which is incompatible with the result of  
eq. (24). 

Why should the Born-Oppenheimer idea o f  a nuclear structure be used? Heuristi- 
cally, care is taken to choose stable states instead of (symmetry-adapted) eigen- 
states. To this end, one takes "eigenstates" within all the particular minima of  a 
given Born-Oppenheimer  potential, called "localized eigenstates" above. These 
"localized eigenstates" are stationary only in an approximate way 7, but can never- 
theless be more  stable under small external perturbations than the strictly station- 
ary eigenstates (23) of  the molecular Hamil tonian in question. It is, of  course, not  
an easy task to substantiate this heuristic point  of  view mathematically. The present 
paper is an at tempt  to develop a formalism of quantum mechanics which should 
eventually lead to a rigorous mathematical  proof  (and also to "corrections" of  the 
usual BO-picture). 

What  is the interesting point with the Born-Oppenheimer  idea of  a nuclear struc- 
ture? If  it is seen as an approximation, one might try to improve it, finally ending 
up with the exact eigenstates of the Hamiltonian H0, which would distroy the whole 
BO-approach. Hence it is important  to see the BO-approach as being qualitatively 
different from quantum mechanics. One should not try to improve BO-results ad 

7 "Stationary" refers to the dynamics implemented by the Hamiltonian H0 of the molecule itself, in 
contrast to "stability under external perturbations". An ammonia molecule in a "handed" state, 
for example, is not stationary at all due to the high tunneling frequency. 
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infinitum. Though this would give better results for the eigenvalues and transition 
probabilities (and in many cases better agreement with experimental spectra), one 
would end up with the physically questionable (strictly stationary but unstable) 
eigenstates of H0. In other words: the interesting aspect of the Born-Oppenheimer 
approximation is that the approximation is in a way better than the exact result. 
In the present paper we try to understand stability requirements and lay the founda- 
tion for finding a "best possible BO-approximation". In particular, a strict distinc- 
tion will be made between eigenvalues and eigenstates: Eigenvalues are quite 
stable under perturbations [72], whereas eigenstates are (often, but not always!) 
unstable. But note that it could well be that the formalism proposed here leads to 
approximate eigenstates in certain "quantum" cases. It should not be understood 
as a propaganda against using eigenstates in any situation. Ammonia-type mole- 
cules serve as the phenomenological background of this investigation: Ammonia 
behaves, in a way, much more quantum-mechanically than chiral molecules. The 
important point will be to understand this and similar "phase transitions". 

Summarizing: The choice of  a decomposition of  the thermal non-pure state D# 
should be done in such a way that the resulting ensemble of  pure states is stable under 
small externalperturbations. Surely, not all the mathematically possible external 
perturbations are physically relevant. Nevertheless, at the present stage, no parti- 
cular class of "physically relevant external perturbations" will be fixed. It will be 
made plausible in section 5 that the requirement of stability leads to a unique 
decomposition of thermal non-pure states into pure ones. This result might change 
if the class of external perturbations is very much restricted. 

An ensemble of pure states is thought to describe the statistics of (many distin- 
guished) single molecules, all in pure states, and all accessible to individual spectro- 
scopic investigation. Coupling an external perturbation to these molecules 
(modelled, e.g., by white noise), one will get a stochastic dynamics on the level of 
pure states (see section 8). 

• In case the original distribution of pure states was stable, it will not change 
much under this external influence. 

• In case the original distribution of pure states was unstable, it will approach a 
stable distribution after some transient time. 

Here "distribution of pure states" is meant in the sense of fig. 3, described by 
some probability density f =f(~9, 4) (for the special case of 2 x 2-matrices, and 
similarly otherwise). 

Note that the notion "ensemble" (of pure states) is not an ensemble in the sense 
of Gibbs. It may also describe a (not necessarily large) number of (distinguished) 
individual similar systems in given pure states, i.e., I allow myself to be rather 
unprecise about these more "philosophical" points 8 

8 In mathematical terms, an ensemble is a probability measure on the space of pure states. 
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We deal now with two different sorts of statistics: 

• Statistics of pure states for quantum theory in individual setting. This statistics 
is described by a probability distribution on the set of pure states (see fig. 3). 

• Statistics in terms of o n e  non-pure state for quantum theory in statistical set- 
ting. This is the usual formalism of quantum mechanics. 

Every probability distribution on the set of pure states gives rise to some non-pure 
state (density operator) via eq. (17), but the converse is not true, since a non-pure 
state (density operator) cannot be uniquely decomposed into pure states (see 
section 2). 

5. An  individual  setting of  quan tum mechanics  

Let us go through the same line of arguments again, using yet another example, 
namely a magnet built up from a big (but finite) number of quantum spins. For a 
given inverse temperature/3 there exists precisely one thermal non-pure state (i.e., 
/3-KMS state) with density operator 

e-EHo 
DE'° -- Tr(e-E~0) (25) 

Here H0 is the Hamiltonian of this magnet (in zero external field). Most "hard 
facts" like the heat capacity, for example, are already encoded in these density 
operators DE,0,/~> 0, and do not depend on the particular decomposition of the 
density operator into pure states. Different decompositions of a given density 
operator DE,0 into pure states can give rise to completely different theories [23,80]. 
One may, for example, decompose it into symmetry-adapted eigenstates of the 
Hamiltonian H0. These symmetry-adapted eigenstates have zero specific magneti- 
zation. Therefore in such a theory permanent magnetism (in zero external magnetic 
field) would not occur. On the other hand, we could try to decompose the density 
operator DE,0 into pure states in such a way that the expectation value m of the spe- 
cific magnetization operator rh is not exactly zero, but distributed around two 
values +m E, and therefore leading to nonzero specific magnetization (for/3 >/3cdt., 
i.e., for a temperature below the Curie point). 

Remark  
The zero-field situation considered here is, of course, entirely artificial. A small 

change of the magnetic field B can change the thermal state dramatically. Here it is 
tried to understand this instability and give sense already to the zero-field situation, 
e.g., compute the permanent magnetization in the zero-field situation and not for 
small external magnetic field B. For single molecules discussed in section 9, the 
situation is similar. An isolated molecule is an artificial object, with strange proper- 
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ties as in eq. (24). In the situation of single molecules, it is not so clear what  sort 
of external perturbations (corresponding to the magnetic field B) should be 
considered. 

The m-distributions of two different decompositions of D~,0 into pure states are 
sketched in fig. 4. In one case, m is distributed around m = 0, whereas in the other 
m is distributed around two different values +m B. Both decompositions are compa- 
tible with one and the same density operator D~,0 (compare fig. 3). Hence the den- 
sity operator of a thermal state does not necessarily tell us something about the 
individual behaviour of  a magnet  built up from a finite number  N of spins. The phi- 
losophy behind this line of arguments is the following: The single individual magnet  
is actually in a pure state. This pure state is usually not known and hence one has 
to consider statistics of  pure states. The problem is to find the correct statistics of 
pure states compatible with the thermal density operator D~,0 (i.e., it is necessary to 
find a stable decomposition of D~,0 into pure states; compare the discussion of  
two different sorts of statistics at the end of section 4). If this stable distribution has 
several "peaks" (as the two peaks in the right part of fig. 4), magnetization is an 
approximate classical observable (with values ±m~). The sharper the peaks, the 
more classical the situation becomes. 

Let us, for a moment ,  turn back to the decomposition of D~,0 into symmetry- 
adapted eigenstates. Then one might argue with good reasons, that this decomposi- 
tion into symmetry-adapted eigenstates is unstable under small external 
perturbations: 

• Introducing, for example, a small external magnetic field B into the Hamilto- 
nian H0 will change the situation completely. The respective density operator 
D~,s will have a nonzero expectation value of the magnetization operator (even 
for small B, if the temperature is below the Curie temperature) and it will there- 
fore not be possible to decompose it into pure states with magnetization zero. 

• Consider a Monte  Carlo simulation of a magnet  [26,131]. There the Hamilto- 
nian dynamics is replaced by some "artificial" Glauber-type dynamics, which 
does not leave the set of symmetry-adapted eigenstates invariant: Any 

m 

Fig. 4. Different distributions p of the specific magnetization referring to different decompositions of 
the same density operator (25) into pure states. This figure refers to some fixed inverse temperature 

/3 >/3cm and some fixed number N of spins. The figure is qualitative and not based on a calculation. 
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symmetry-adapted eigenstate is transformed into a non-stationary state 
already under the first step of  the Glauber dynamics. 

Therefore we meet again a situation where it does not  make sense to restrict oneself 
to eigenstates. This is not to mean that eigenstates should never be used? 

Consequently, different decompositions o f  a non-pure state are not at all physi- 
cally equivalent. Some of them are stable (=robust) and some are unstable (under 
external perturbations) and the task is to find out the robust ones. In the example of  
the magnet,  it is rather simple to find appropriate external perturbations (namely 
a small external field, perhaps varying stochastically in space and time). In the 
example of  a molecule, the situation is much more involved. It might indeed be 
necessary to investigate the influence of the (quantum) electromagnetic field, i.e., 
to investigate the joint system {molecule & radiation field}. For such cases one 
would like to have an appropriate decomposition at hand which guarantees robust- 
ness of  the respective decomposition into pure states even if it is not clear what the 
specific external perturbations are. 

Let us think of  statistical mechanics and illustrate the situation by means of the 
famous gedankenexperiment of Borel [31 ,p. 98]. There the influence ofaSir ian  bee- 
tle (8.3 x 1016 m away) on a gas at normal conditions in a cube of 10 cm length is 
estimated. The beetle's walk of  just 1 cm changes the (classical-mechanical) com- 
putat ion such that the position of an individual particle is changed by approx. 
10 cm after 10 -6 seconds. The individual (classical-mechanical) pure states are 
very unstable. That  is the reason for choosing a stable ensemble of (unstable) indivi- 
dual states, namely the Gibbs ensemble, characterized by the maximal-entropy 
principle of  Jaynes. 

With Jaynes' principle of  maximal entropy [70] in mind, it is clear what has to 
be done to get robust decompositions of thermal non-pure states. One simply 
chooses the decomposit ion having maximal entropy with respect to equipartition 
of  pure states (i.e., with respect to the unique ensemble of pure states invariant 
under all potential symmetries of the system in question; hence "equipart i t ion" is 
not equiparti t ion of eigenstates, but equipartition of  all possible pure states!). 
Therefore, to apply Jaynes' principal of  maximal entropy, one needs two 
ingredients, 

• an equiparti t ion ofpure  states 9, 

• and an entropy for a given (arbitrary) distribution of pure states with respect 
to equipartition. 

For  simplicity, let us consider a two-level system. The pure-state space of the 
two-level system can be represented as the surface $2 of a sphere in three-dimen- 
sional real space (see Appendix 1 and fig. 3). The potential symmetries (corre- 

9 For infinite-dimensional Hilbert spaces, an equipartition measure on the space of pure states does 
not exist. This problem is not discussed here. 
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sponding to the unitaries and antiunitaries acting on the 2-dimensional Hilbert 
space) are represented as rotations and reflections in 3-space. The unique invariant 
measure ~qp (equipartition of pure states) on $2 is then given in spherical coordi- 
nates by #eqp = sin ~9 d~9 d~/47r. The entropy S(/z) of a given ensemble 

sin t9 dr9 d~b 
# = f(vg, ~b) 47r ' (26) 

on the other hand, is defined by 

S(#) = S(#l/~qp) = - j/s2f(vg, ~b) ln[/'(zg, ~b)] sintgaTrdV~ d4) , (27) 

i.e., as its relative entropy with respect to the equipartition #eqp. These definitions 
of equipartition and entropy can be generalized to arbitrary d × d-matrices. The 
equipartition measure, in particular, is the canonical measure on the d-dimensional 
complex projective plane [73,94]. Here for most considerations the 2 × 2-matrices 
will be used to simplify understanding. 

The maximum-entropy principle can then be formulated as follows: Assume 
that a given quantum system is in a pure state but that this pure state is unknown. 
Assume furthermore that the only knowledge about the system is some non-pure state 
with density operator D. Then the probability o f  finding the pure state in some subset 
o f  all pure states is described by the ensemble o f  pure states having maximum entropy 
with respect to equipartition. The ensemble with maximum entropy is chosen among 
all the ensembles of pure states yielding the given density operator D (via mixing 
in the sense ofeqs. (3), (17)). 

Remarks 

• If an ensemble of pure states if of the form (f(tg, ~b) sin ~9 dO dcb/47r), i.e., of the 
form function f on the space o f  pure states × equipartition measure, it is called ab- 
solutely continuous with respect to equipartition measure in mathematical termi- 
nology. The definition in eq. (27) holds only for such absolutely continuous 
ensembles, whereas for all other ensembles the entropy is minus infinity ( -oo)  
[45,46]. A decomposition of a density operator into its eigenstates, in particu- 
lar, has entropy - ~ ,  and not maximal entropy. 

• Let us look at fig. 4. A decomposition of the thermal state (25) into eigenstates 
leads to a distribution similar to the left part of the figure (sharply peaked at 
m = 0). A decomposition of the thermal state (25) according to the maximum- 
entropy principle, on the other hand, has a tendency to lead to the distribution 
in the right part of the figure (because the maximum-entropy condition tends 
to distribute the expectation values of m the best possible way among all poten- 
tial values m e  [-1, +1], and not to concentrate it on one particular value as, 
e.g., m = 0). A mathematical argument will be given below. 
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• To apply Jaynes' principle of maximum entropy, "every" available informa- 
tion has to be included. Since one knows, for example, the precise Hamiltonian 
for the joint system {molecule & radiation field}, one should discuss this joint 
system to understand spectroscopic phenomena. Such an investigation can, of 
course, lead to the result that the radiation field does not play any role for cer-  

tain spectroscopic phenomena. For a detailed investigation of spectroscopic 
phenomena in every respect, the consideration of the quantum radiation field is 
necessary (think of the spontaneous decay of excited states). 

• Pure states do n o t  necessarily make sense for arbitrary systems (and in such a 
case it is not advisable to decompose thermal states into pure states). I fa  system 
is strongly entangled with its environment (i.e., Einstein-Podolsky-Rosen- 
correlated with its environment), then it does not make any sense to view it as 
being in a pure state. In this case either the environment has to be included into 
the description (e.g., by passing from the isolated molecule to the joint system 
{molecule & radiation field}, as before) or one must find a suitable dressing 
transformation [22]. A dressing transformation changes the splitting within a 
joint system in such a way that the EPR-correlations (almost) disappear. A 
dressed molecule, for example, can then be treated as being in a pure state. 

• A "mixed" state can have different meanings [17,48]: It can either be a short- 
hand description of an ensemble of pure states, or arise as restriction of a pure 
state (e.g., of the joint system {molecule & radiation field}) to a smaller part 
(e.g., the molecule). In the latter case, it does not necessarily make sense to de- 
compose the "mixed" state into pure states (or only after an appropriate dres- 
sing transformation). Here the term "mixed" state is always replaced by non-  

p u r e  state. 

• It is important not to confuse different concepts of entropy. The von-Neumann 
entropy Tr(D In D) of a density operator D [87,138], for example, is not identi- 
cal with the entropy of its decomposition into pure states as defined in 
eq. (27). Further entropies are used below. In the present paper, the relations 
between these entropies will not be discussed. 

• Maximal entropy ensembles can be shown to be of the form 

exp{-/3q~(aft) ) ]'Zeqp (28) 

f.al p=e states ~ exp{-/3~(Lr)) IZ.qp(d4~) ' 

w h e r e / t  is some linear selfadjoint operator, usually not coinciding with the ori- 
ginal Hamiltonian H0 used to construct the thermal non-pure state as in 
eqs. (2), (25). The measure ]Aeq p is the equipartition ensemble of pure states. 

• The formalism here is based on Kolmogorov axiomatic probability theory 
and it is not clear at all i f"nature" ,  when behaving "randomly",  should behave 
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according to these axioms [71 ]. The notion of probability is particularly delicate 
in quantum mechanics. 

Let  us try to reformulate what we have done till now: Instead of decomposing a 
thermal density operator into eigenstates, a maximal entropy decomposition into 
non-stationary states was used. This maximal entropy decomposition may give rise 
to an approximate classical structure, as suggested in the right part of fig. 4: Most 
of the pure states in the chosen ensemble have approximate expectation values 
i m ~  of the specific magnetization operator rh. Nevertheless one has still pure states 
in the maximum-entropy ensemble with expectation value zero of rh. The superpo- 
sition principle is still fully valid, i.e., arbitrary superpositions of given states are 
still legitimate states of the system in question (a magnet in our example). Hence it 
is also legitimate to superpose some pure state (with state vector ~P) and its space- 
inversed form (I~V, similar as in eq. (21)), to end up with a state having zero expecta- 
tion value ofrh. Such states still arise in the ensemble chosen (because the respective 
density p is nonzero at m = 0). But states with expectation value m --- 0 only arise 
with low probability. Therefore such states are unstable under external perturba- 
tions and decay preferably into states having expectation value +m~. Hence in the 
present formalism dynamical aspects come in and there is no one-to-one correspon- 
dence any more between classical observables and superselection rules as in alge- 
braic quantum mechanics [33,34,99,117] (because strict classical observables and 
superselection rule do not exist in the formalism advocated in the present paper). 

In this paper, maximum-entropy decompositions of some given thermal non- 
pure state (for a given number N of spins, e.g., for 1 spin [121,122], or some given 
number of modes of the radiation field coupled to some molecule) will not be com- 
puted in an explicit way. 

Another important new aspect is brought into discussion and should be emphasized: 
What happens when the number of degrees of freedom increases [15,16]? Interest- 
ingly enough, the solution to this question offers the possibility to discuss "how 
fast" classical observables arise with an increasing but f ini te number of degrees of 
freedom (and not in time). 

Let us try to illustrate this point for a magnet consisting of N quantum spins. 
Let D~,N be the density operator (for zero external field) and consider its maxi- 
mum-entropy decomposition Panax = f¢,N(05)#~p(d05), where/ZNp(d05) is the equi- 
partition measure on the space of pure states 10 and wheref~,N is the probability- 
density function on the pure-state space [05 stands for an arbitrary pure state, which 
may be implemented by some state vector V,, if this is helpful: 05(-) = (V,[-~b,)]. 
Consider now the probability P~,N[ml, m2] to find the expectation value 05(rhN) of 
the mean-magnetization operator rhN in the interval Ira1, m2] (all being written in 
one dimension, for simplicity) with respect to the ensemblef~,N (05)#~qp (d05) of pure 

l°The equipartition measure is sin0 dO dqo in case of a two-level system. For m x m-matrices, a 
more general expression can be given by means of generalized spherical coordinates. 
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states. This  probabi l i ty  Pa,~r[ml, m2], for varying intervals [ml, m2], is all we need. 
The connect ion  between this probabil i ty measure  P and the probabi l i ty  densities p 
(or more  preciselyp~,N) sketched in fig. 4 is (by definition) given as 

P3,N[ml, m21 = P3,N(m) din. (29) 
1 

Rough ly  spoken,  an approximate classical observable gets "more  and more  classi- 
cal" if the probabi l i ty  P~,N or the respective probabil i ty densityp~,N gets more  and 
more  concent ra ted  on certain values for the magnet izat ion,  say +m~ and - m ~ ,  
with increasing N (see section 6). I f  neither +m~ nor  - m  B is in the interval [ml, m2], 
then the respective probabil i ty P~,u[ml, m2] dies out. Usually (i.e., if [3 ~/3=it.) this 
takes place exponential ly (see section 6), 

P~,u[m],m2] ~ e x p { - N  inf  (Smean(m))~. (30) 
m ~ Ira1 ,m21 J 

In this formula ,  Smean = Smean,3 is a (positive) en t ropy  (taking as its m i n i m u m  the 
value zero, see fig. 5) in the sense of  the large-deviation formal ism [45,46,76] 
(" la rge"  deviat ions means  that  these deviations "die out"  with increasing particle 
n u m b e r  N, whereas normal  thermal  f luctuat ions are propor t iona l  to x/N.). It has 
the fo rm of  a doub le -min imum potential  (see fig. 5) and  describes the successive 
concent ra t ion  of  the (expectation vales of  the) magnet iza t ion  opera tor  to the speci- 
fic values +m~ and - m ~  with increasing number  of  spins considered (the en t ropy  
funct ion  takes its m i n i m u m  zero at +m~ and -m~) .  Other  expectat ion values of  the 
magne t iza t ion  opera tor  are still possible, but  die out  with increasing N. In other  
words: this entropy function s tells us "how quickly" classical observables arise with 
increasing number of  spins. 

As men t ioned  earlier, the superposi t ion principle still holds universally for 

- n  9 ml m2 

s ~  

Fig. 5. An entropy function Smea~ in the sense of fluctuation (large-deviation) theory, describing how 
fast the mean magnetization of a spin system gets classical with an increasing number of spins. The 
figure is based on an approximate calculation in section 6 for the Curie-Weiss model. The tempera- 
ture is fixed and has been taken here as one third of the critical (Curie) temperature. Above the Curie 

temperature the respective entropy Smean would only have one minimum, namely at m = 0. 
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finitely many degrees of freedom N (see remarks in the second paragraph of this 
section). But after the limit N --~ oo, only pure states having expectation values +m~ 
"survive", and all others "die out" according to eq. (30). Pure states having specific 
mean magnetization zero, m = 0, do not exist any more. In particular, superposi- 
tions of a pure state ~" and its space-inversed form (I~V, similar to that in eq. (21)) 
are "forbidden" after the limit N ~ oo and the mean magnetization rh becomes a 
strict classical observable, now equivalent to a superselection rule. 

Remarks 

• Classical observables are not defined here in a formal way, since formalization 
at too early a stage is not helpful for a new approach to quantum theory. The 
essential point with a strict classical observable C (such as the magnetization rh 
in the limit N - +  oo) is that superpositions of its eigenstates cannot be super- 
posed any more. In the present paper's formalism, such superpositions do still 
exist for finite N, but with low probability (with respect to the maximum-entro- 
py ensemble of a thermal state). It is not a priori clear, that low probability 
with respect to a maximum-entropy ensemble is equivalent to quick decay in 
time (but see the discussion in section 7). 

One should clearly distinguish between all the different entropies used in this 
paper: The yon Neumann entropy of a density operator; the entropy of an en- 
semble of pure states with respect to equipartition; and the entropy Smean de- 
scribing how fast a classical observable arises with increasing number N of 
degrees of freedom. 

According to mathematical convention [45,46], the entropy Smean has been cho- 
sen as a positive function. 

Equation (30) refers to the distribution of the expectation values c~(FnN) in the 
ensemblesf~,N(qS)#N(d~). This restriction to expectation values is unnecessary 
and only chosen here for simplicity. A more general discussion would, for ex- 
ample, include distributions of the dispersion of expectation values 

~b(rh~v ) -(~b(rhN)) 2 . (31) 

Such a more general discussion would also be necessary to give a formal defini- 
tion of approximate classical observables. 

One could, of course, also try to replace the maximum-entropy ensemble (for 
some given thermal state) by some other reasonable ensemble of pure states. 
One could, for example, try to minimize the dispersion of certain observables 
(such as the position operators of the nuclei in a molecule) instead of using the 
maximum-entropy principle. Minimize the dispersion of the position of the nu- 
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clei (in a molecule) would mean to look for an ensemble # which minimizes 
the integrals 

f . ,  {¢(Q~j)-¢(Qj)2}#(d(b), j =  1 , 2 , . . . , M ,  (32) 
1 pure states 

under the boundary condition that # gives rise to the given thermal nonpure 
state D~ via eq. (17). Note that we look for the ensemble # which minimizes the 
integrals in eq½ (32) and not for an individual pure state q~ minimizing 
{~b(Q 2) - d?(Qj) }. The minimization procedure in eq. (32) would lead to a de- 
composition ~local of On, different from the maximal entropy decomposition 
and interesting for the discussion of the Born-Oppenheimer approximation. 
With respect to #local the nuclei would be localized in the best way possible. The 
maximum-entropy principle has the advantage, that it can be applied without 
choosing particular observables such as the position operators of the nuclei. 

In algebraic quantum mechanics [29,30,33-36,99,117], classical observables ex- 
ist only after the limit N --~ ~ of infinitely many degrees of freedom. For a large 
but finite number of degrees of freedom (number of spins in a magnet of number 
of modes of the radiation field coupled to a molecule), the system under discus- 
sion behaves always fully quantum-mechanically. This serious shortcoming is 
overcome in the present formalism. In particular, our formalism shows that 
classical observables do not arise suddenly at N = 0% but arise gradually as ap- 
proximate classical observables taking restricted values (e.g., 4-m~) with higher 
and higher probability (as N increases). 

6. Large  deviat ions theory I 1 

The aim of the present section is to show how entropies like Smean in fig. 5 can 
be computed. 

In section 5 the theory of fluctuations in statistical mechanics, the so-called 
large-deviations theory, was used to describe the generation of approximate classi- 
cal structures. Therefore an introduction to this theory of fluctuations may be help- 
ful. An excellent presentation is given in the original paper of Lanford [76]. 

To have an example at hand, let us take N molecules of equal structure, all of 
which are modelled as having M possible energy levels with energies el, e2, - ' . ,  eM. 
In this example the state space f2Ar of N molecules is taken as the Cartesian product 
of the N state spaces of the molecules, i.e., ON = {q, {Z2, " "  " ,  £M} N (without super- 
positions). This way of choosing f2N corresponds to a composition rule as in classi- 
cal mechanics. In quantum mechanics, the tensor product and not the Cartesian 
product must be used to compose systems. Let now in this "classical" example 

11 The mathematical parts of this section could be skipped at a first reading. 
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Xj e {q, e2,. -., eM},j = 1, 2, -. -, N, denote the actual energy value of the molecule 
j. The number M of possible energy values remains fixed, whereas the number of 
molecules will be variable later on, when we study how the fluctuations of the speci- 
fic energy 

y'~;=, Xj (33) 
e : ~  T 

in an ensemble "die out" with increasing number of molecules. The energies Xj and 
X~ of different molecules are assumed to be independent and identically distributed 
(equidistributed here for simplicity). 

How is the specific energy (33) distributed (for some fixed N), and how does 
this distribution change with increasing number N of molecules? Note that these 
are precisely the questions we posed in section 5: How are the pure states distribu- 
ted (see fig. 4) and how does this distribution change with an increasing number 
of degrees of freedom (see fig. 5). 

For the present classical example the answer has been given by Cramer [42]. It 
is reviewed here in a simplified way: Define the "Massieu potential" 

1 1 / N / 
c(y) = lirnoo In ~ - W ~  ex p y Z X j  (34) 

(35/ 

In eq. (35) the independence and identical distribution of the energies Xj have 
been used. The variable y formally corresponds to (minus) the inverse temperature. 
In traditional thermodynamics the Legendre transform of the Massieu potential 
(as a function of the inverse temperature) is the entropy (as a function of the 
energy). Hence we denote the Legendre transform o f c :  c(y) by s, 

s(e) def sup{ye - c(y) } , (36) 
y e R  

and call it an entropy. In particular situations, it may indeed coincide with the ther- 
modynamical entropy (apart from sign and normalization conventions). In other 
situations, it is a Gibbs free energy (modulo a factor/3), or anf(a)-spectrum in the 
multifractal formalism, or the spectrum of Lyapunov coefficients of a dynamical 
system [92]; it also arises in the context of the quantum-mechanical measurement 
problem [14]. For the present classical example, Cramer's important result [42] 
says something about the probabilities PN([el, e2]) and PN(]el, e2D of finding the 
specific energy (33) in some arbitrarily chosen closed or open interval, 

limsup 1 lnP~([ex e 2 ] ) ~ <  - -  ( inf s(e)) 
U ~  N ' \ ee [el,ez] ' 
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l iminf 1 In PN(]e,,e2[)>~- ( inf s(e)'~. (37) N-+oo N ~ke E lel ,e:~[ ) 
If the entropy s is continuous at el and e2, one may simply write 

lim 1 lnPN([el,e2])=--( inf s(e)) (38) 
N-+oo N \ee [el ,e2l ' 

and similarly for the open interval. These are mathematically more precise formu- 
lations of 

PN[el,e2] ~,, exp { - N  e sine[e, ,e=l s(e) } .  (39) 

The result in eq. (30) corresponds to eq. (39) and should be formulated in the 
same way as eq. (37) in some cases (e.g., for non-continuous entropy functions, 
etc.). 

Eq. (39) describes how fast large deviations (i.e., deviations proportional to the 
particle number N) "die out" with increasing N. Incidentally, the "small" devia- 
tions, proportional to x/N, survive. Their behaviour is related to the behaviour of 
the entropy function at its minimum. Note that the entropy function has been cho- 
sen convex here (with modifications as below), in accordance with mathematical 
terminology, and not concave as in thermodynamics. This is just a matter of con- 
vention. 

In the present classical example, the entropy function can easily be computed. 
Since it is the Legendre transform of a convex Massieu potential, it is itself convex. 
If, for example, a convex entropy function takes its minimal value 0 at points a 
and b, then it takes this minimal value 0 also on the line 

A a + ( 1 - A ) b ,  A~[O, 1]. (40) 

This convexity of the entropy function is nice from a mathematical point of view but 
unpleasant for some physical applications. 

Let us study this question for the example of a quantum-mechanical magnet in 
section 5. The respective entropy function in fig. 5 is non-convex. If one tried to 
derive it via a Legendre transform, one would end up with its convex hull: with an 
entropy function Smean coinciding with Smean for m ~< -- m~ and m ~> + toO, but with 
a straight line Smean = 0 between -mo  and +m0. In other words: The hump between 
-m0  and +m~ would disappear! Try to insert this convex entropy function Smean 
into eq. (30) and check that it says nothing about m-values between -m~ and +toO. 
In particular, one could not conclude that pure states having zero expectation value 
of rh die out with increasing number of degrees of freedom. Incidentally, the same 
problem (without yet a solution) arises with left-sided multifractals [77], as in the 
case of diffusion-limited aggregation. 
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So in the context o f  this paper (where certain superpositions should disappear 
with increasing number of degrees of freedom), it is enormously important to have a 
non-convex entropy function. 

In the following, this is achieved by use of the lemma of Varadhan [45,46]. The 
mathematical details will only be sketched, emphasizing the problems arising with 
the particular large-deviation approach proposed in section 5for quantum mechanics 
in individual setting. Three approximations will be used, which can be improved 
immediately. This is not done here, since it would only complicate the computation 
without giving more insight into the main aspects of the problem. 

Consider the Curie-Weiss model (in zero external field) with Hamiltonian 

j S 
- -  __ O'z,iO'z, j HN 2N ~= 1 • (41) 

Here aza are the Pauli matrices (spin = 1) in z-direction for the particles 1, 2, ---, 
N. The underlying phase space J2N consists now ofallpure states of  the N-spin sys- 
tem, i.e., all pure states on the N-fold tensor product of the 2 × 2-matrices M2 

M2 ® M2 ® ' - -  ®M2.  (42) 

The important point is that the state space of  the N-spin system is not just the N- 
fold Cartesian product of  the state space for one spin (the latter is isomorphic to the 
sphere, see fig. 3). 

Let us first try to compute the "microcanonical" entropy function I for the distri- 
bution of the expectation values 

1 N 
¢ ( ~  j__~l ~rzj), (43) 

where ¢ is an arbitrary pure state of the N-spin system. To this end, it is necessary 
to compute the Massieu potential 

lim l l n f  exp[y¢ (@'az j ' ~ l~eqp (d¢ ) .  (44) 
N - , - c ~ N  J~2N L ]J 

Here an approximation will be used, taking instead the Massieu potential 

c(y) def In [_  exp{y¢(azj) }/Zeqp(d¢), (45) 
JJ l  1 

which is actually an integral over the surface of the sphere $2 and can be evaluated 
to give c(y) = ln(sinhy/y). Incidentally, the corresponding Massieu-potential for 
the classical Curie-Weiss model is given as ln(cosh y) [46]. The Legendre transform 
of c(y) = ln(sinh y/y)  will be called I, to distinguish it clearly from the "canonical" 
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entropy function Smean below. The entropy function Smean is related to the entropy 
function I by Varadhan's lemma. 

The second approximation used here concerns the maximal-entropy ensemble 
of pure states compatible with the thermal density operator D~, which is of the 
form given in eq. (28): Instead of computing the "Hamiltonian" ~rN, the original 
Hamiltonian Hu in eq. (41) will be taken, ending up in the ensemble 

exp{--/3¢(HN) }#eqp (46) 
fan exp(-fl¢(HN) }lZeqp(d~b ) " 

Note that --flHN can be expressed as a function 

--/3HN = Nh~(Fn) (47) 

of the mean magnetization operator 

1 N 
rh = ~ Z azj, (48) 

j=l  

where 

h~ (x) def ½3Jx 2" (49) 

The second approximation (46) is reasonable, since the mean magnetization opera- 
tor rh is "almost" commuting with all other observables for large N. 

Now comes the third and last approximation, replacing 

--J3¢(HN) = N¢(h3(rh)) (50) 

by Nhz(¢(rh)). This third approximation allows to rewrite the ensemble in 
eq. (46) as 

exp{Nh3(¢(th)) } #eqp (51) 
fan exp{Nh3(¢(~h))} ]AeqP ( d e ) "  

At this stage the entropy function Jmean for the distributions PZ,N of the expecta- 
tion values ¢(rh) (see eq. (30)) with respect to the ensembles in eq. (51) can be com- 
puted. By Varadhan's lemma [46] the entropy function S~mean is given as 

Jmean(m) = {I(m) - h3(m)} - inef{I(m ) - h3(m)}, (52) 

where I is the Legendre transform of the Massieu-potential 

c(y)=ln , y e R ,  (53) 

defined in eq. (45). Figure 5 is based on this result, where the temperature has 
been taken as one third of the critical (Curie) temperature. 
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Consider now the limit N --~ oo. In algebraic quantum mechanics, this limit gives 
rise to a strictly classical observable "magnetization", i.e., the operator 

r~/o ° def = a - weak lim 
N--*" e~ 

N 

crzj (54) 
j = l  

(in the GNS-representation [34] with respect to a thermal limit state) commutes 
with all the operators in the quasilocal C*-algebra (generated by the spin opera- 
tors). The thermal limit state can be shown to be a direct sum (or direct integral) of 
disjoint factor KMS-states [29,30] having a dispersion-free expectation value of 
any classical observable. Therefore the mean magnetization rh~, in particular, 
takes dispersion-free expectation values with respect to the factor KMS-states. 

The individual setting of quantum mechanics gives the possibility to introduce 
approximate classical observables. The superposition principle is still fully valid 
for finite N, but nevertheless pure states with zero expectation value of rhg "die 
out" with increasing N. Pure states ¢ "survive in the limit N--~oo" only if the 
respective expectation values ¢(rhN) converge to the expectation values of rhoo with 
respect to factor KMS-states. This last claim is not yet proven in every detail. One 
must compute the distribution of the dispersion ¢(rh 2) - ¢(rhs) 2 for pure states 
in the maximum entropy decomposition, which is currently under investigation. 
This would also give more detailed insight into the concept of an approximate clas- 
sical observable. I expect that the distribution of the dispersion ¢(rh 2) -¢( rhn)  2 
"dies out" with increasing N and that this process can again be described by an 
appropriate e n t r o p y  ~dispersion (analogous t o  S~mean, but with only one minimum even 
below the Curie temperature). 

7. A heuristic dynamical  derivation of the maximum-entropy principle 

It might be worthwhile to summarize a little bit: The thermal state Dp is intro- 
duced in statistical quantum mechanics as a state which is stable under perturba- 
tions [33]. Here we went further insofar as we looked for stable decompositions of 
the thermal state into pure states. The maximum-entropy decomposition of D~, in 
particular, leads to a unique ensemble ~a~  of pure states with maximum entropy. 
This ensemble/~ax is not concentrated on eigenstates, i.e., the pure states in the 
ensemble can be nonstationary. The reason for using a maximal entropy ensemble 
was to get a stable description under "external perturbations". In particular, not 
only the Hamiltonian of the system under consideration gives rise to a dynamics, 
but also the external influences of the "environment". It would be nice to under- 
stand this dynamics in a better way and to "derive" the maximum-entropy principle 
from dynamical considerations. Though the maximum-entropy decomposition is 
favored here, it would be very interesting to know something about its relation to 
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other  decomposi t ions:  The decomposi t ion  of  a molecular  thermal  state into pure  
(non-stationary)best-localizedstates,  for example, as in t roduced in eq. (32). 

Let us start  with the von N e u m a n n  point  of  view (see section 4) of  a molecule 
coupled to the radiat ion field (with an addit ional  electromagnetic  input  coming 
f rom the experimenter).  The si tuation is sketched in fig. 6: Start ing f rom an arbi- 
t rary fixed initial state, one will end up with eigenstates of  the coupling opera tor  
between molecule and field (the dipole operator) .  In fig. 6 these eigenstates of  the 
coupl ing opera tor  are identified with the poles of  the sphere. According to the pro- 
ject ion postulate,  the probabil i ty to reach the nor th  pole is ½(1 + cos{0}) and the 
probabil i ty to reach the south pole is ½(1 - cos{0}), where z9 (and ~) are the spheri- 
cal coordinates  of  the initial state. 

In von N e u m a n n ' s  point  of  view, quan tum jumps  are replaced by a stochastic 
dynamics  [13,14,28,57-59,100,101,150]: Depending  on the state of  the "envi- 
r o n m e n t "  (e.g., the radiat ion or gravi tat ion field or a measurement  apparatus) ,  the 
initial state of  the two-level molecule is either t ransformed into a spin-up or into a 
spin-down state. Stochasticity comes in because the state of  the envi ronment  
(which is a system with many  degrees of  freedom) cannot  be determined.  

In statistical q u a n t u m  mechanics,  the process during spectroscopic measure-  
men t  is described by some density operator  dynamics,  such as that  one determined 
by the Karplus-Schwinger  equat ion (4). One might  try now to find a stochastic 
dynamics  on the level of  pure states which corresponds to the original density- 
opera tor  dynamics  via eqs. (3), (17). In other words: Start ing f rom some initial 

final state z 

final state 
"spin down" 

Fig. 6. Sketch of a stochastic dynamics for pure states of a two-level molecule, based on the von Neu- 
mann point of view (see section 4): Starting from an arbitrary initial state one ends up with eigenstates 

of the dipole moment operator (coupling the two-level molecule to the radiation field). 
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state (or some initial ensemble p~ of pure states) one would get ensembles #t (of 
pure states) at time t, finally ending up with some asymptotic ensemble/zoo in the 
limit t --+ oo. 

The difficulty is that non-pure states cannot be uniquely decomposed into pure 
states (see section 2). Hence completely different stochastic dynamics on the level 
of  pure states may (and are indeed) compatible with one and the same density 
operator dynamics [136]. Therefore it is necessary to derive a stochastic (nonlinear) 
dynamics on the pure-state level from first principles, without simply relying on 
density operator dynamics. Here this will not be discussed in detail. Keywords 
would be: Hartree approximation and dressing procedures. 

The important  point is: Stochastic dynamics on the pure-state level can be 
"derived" [13,14,28,57-59,100,101,150] 12. Let us hence assume that the "external 
perturbations" coming from the environment are modelled by a stochastic dynamics 
on the pure states o f  the system under consideration, e.g., a quantum-mechanical  
magnet  or a molecule coupled to the radiation field (or some other environment 
such as a matrix in which it is embedded). One will, of course, usually not  deal with 
such a simple pure state space as the surface of a sphere in fig. 6. Let us furthermore 
assume that the asymptotic ensemble/zoo of the stochastic dynamics considered ful- 
fills a detailed-balance condition: 

R(F1 -+ F2)#o~ (F1) = R(F2 --+/71 )/2'oo (/'2) • (55) 

Here R(Fa--* Fb) is the transition rate between two arbitrary (Borel) sets of  pure 
states; think of two subsets of the surface $2 of the sphere, which is the simplest 
space of pure states (see fig. 3). This sort of detailed balance condition has, for 
example, been used by Einstein in his derivation of the spontaneous decay rates for 
(eigenstates) of a molecule in contact with the radiation field. The situation consid- 
ered here is actually quite similar to that one considered by Einstein, with the only 
difference that we accept arbitrary pure states instead ofeigenstates of the Hamilto- 
nian. 

Let us therefore assume to have modelled the "external perturbations" of  a sys- 
tem by a stochastic dynamics on the level of pure states (of this system), fulfilling 
the detailed-balance condition (55). Then it can be shown that the relative entropy 

S(~t I .oo).de~ _ f gt In g, d#oo (56) 
Ja  11 pure states 

of  the ensembles #t (of  pure states) at time t with respect to the asymptotic ensemble 

12 Actually, derivation is difficult and the existing examples have been invented to get some idea 
how derived dynamics could look like. Nevertheless, enormous progress has been made in the last 
years. Incidentally, the contributions of V. Belavkin (Nottingham) to stochastic quantum dy- 
namics should most certainly be mentioned. Unfortunately, I do not (yet) understand them well en- 
ough to be allowed to cite them. An interesting discussion with Prof. Belavkin is gratefully 
acknowledged. 
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#o~ of  the stochastic dynamics increases. Here #t -- gt#oo has been written as {func- 
tion gt on the space of pure states x asymptotic ensemble/Zoo}. If/z/does not have 
this structure, then its relative entropy with respect to/zoo is - ~ ,  and the relative 
entropy can again only increase. 

The relative entropy of eq. (56) corresponds to the absolute entropy in eq. (27) 
used for the maximum-entropy principle. Comparing (in a hand-waving argument) 
relative and absolute entropy, one can "show" that the absolute entropy of the 
ensembles/zt increases,/fthe "energy" of the system under consideration does not 
change. Hence one may expect that coupling to an environment leads to an increase 
of the absolute entropy (27) of the ensemble of pure states, and hence finally to an 
ensemble of maximum entropy. In short." Starting with some arbitrary decomposi- 
tion o f  a thermal state D~, the coupling to the environment will (via a stochastic 
dynamics on the pure states) lead to a maximum-entropy decomposition. 

8. Transi t ion probabilit ies and  lifetimes 

In this section, it will be shown how stochastic dynamics on the pure-state space 
of a system can in principle be discussed, and how transition probabilities and life- 
times can be computed. In this section, transition probabilities do not refer to tran- 
sitions between eigenstates of the Hamiltonian, but to transitions between 
arbitrary regions of the pure-state space (e.g., starting from an arbitrary pure initial 
state to an arbitrary part of the surface of the sphere, in case of a twolevel system, 
see fig. 6). The system in question could, e.g., be a magnet or a molecule. This sys- 
tem is thought to be perturbed from "outside", i.e., its dynamics also depends on 
the (pure) state w of the environment. Hence the state w becomes the stochastic vari- 
able in the description of the system. 

Remark 
In this context, not only the system but also its environment is assumed to be in a 

pure state, though this pure state is perhaps not known and can only be estimated. 
Initially, the statistical non-pure state of the environment will, for example, be 
described by a thermal density operator D~. The respective maximum-entropy 
ensemble fl'max,envir of pure states (now taken for a particular environment such as a 
measurement device, and not for the original system) then describes the probability 
to find the environment in some pure state w. Depending on ~, the state q~ of the ori- 
ginal system will develop dynamically in a different way. The result is a stochastic 
dynamics on the pure states 4~ of the system (see fig. 6). 

In fig. 7, for example, the situation of a mean-field magnet is taken up again 
(see fig. 5) with its characteristic entropy function Smea~ computed in section 6. 
How could a dynamical description look like, where the dynamics does not only 
stem from the mean-field Hamiltonian (41) of the magnet alone, but also from 
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Fig. 7. Here the situation of fig. 5 with its characteristic entropy function Smean is shown again together 
with a possible dynamical evolution of the magnetization m of an individual pure state. The magnet 
is thought to consist of a fixed finite number N of spins at a fixed temperature. The dynamics is 

sketched and not based on some computation. 

external stochastic perturbations (e.g., an external fluctuating magnetic field). 
This additional stochastic dynamics prevents, in particular, that eigenstates of the 
Hamiltonian (41) are stable as they would be in an isolated description. Consider a 
given initial state ~b0, with, say, expectation value -m~ of the specific magnetization 
rh. Since most pure states in the maximum entropy ensemble (decomposing the 
thermal non-pure state D~) have magnetization expectation value +m~ or -m~,  
and since the maximum-entropy ensemble describes the situation in thermal equili- 
brium, one may expect that the dynamical evolution 

t ~-+ qS,(rh) (57) 

with initial value -m~ will remain near -m/~ for quite some time, but nevertheless 
be able to change to the other side with values near +m~ (see fig. 7), as long as the 
number N of spins is finite. This will be the more the case, the more the temperature 
is raised to the Curie point, at which the entropy Smean gets very flat and changes 
from a double- into a one-minimum shape above Zcrit.. 

Or have a look at fig. 6, where a simple two-level system is taken as an example. 
Starting with some arbitrary initial state, one could, for  example, be interested to 
know i f  the dynamics leads to the north- or to the south pole, i.e., i f  the dynamics leads 
to the spin-up or the spin-down eigenstate o f  the dipole operator (which couples mole- 
cule and field). Or one could be interested in the time necessary to get the north- or 
south pole ("how long does it take for  some arbitrary initial state to become an eigen- 
state o f  the dipole-rnoment operator in a spectroscopic process?"). A realistic situa- 
tion could, of course, be much more complex. Also, given the philosophy of the 
present paper, eigenstates would not play a predominant role (neither eigenstates 
of the Hamiltonian nor eigenstates of the dipole moment operator). It would, in 
particular, be interesting to compute lifetimes o f  the ground state o f  a chiral molecule 
(see section 1), i.e., how long it does take for the proper ground state o f  a chiral mole- 
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cule to decay into the handed states. Here, for the sake of  simplicity, the von Neu-  
m a n n  point  of  view is taken and the "semi-realistic" example below is chosen 
accordingly.  

We shall, in the following, stick to the si tuation of  fig. 6. Start ing f rom some 
initial state, we deal with trajectories depending on the state w of  the env i ronment  
(which arise with a certain probabil i ty P, i.e., P is a probabil i ty measure  on the 
pure-state space of  the environment) .  These trajectories are trajectories in the state 
space, and not  trajectories in the sense of  (p, q) values varying with t ime (see 
fig. 6). The pure state 4)t depends on the state ~ of  the envi ronment  

4)t = 4)t(~). (58) 

This nomenc la tu re  could be misleading for a mathemat ic ian.  It should simply indi- 
cate that  4)t depends on an addit ional  variable w. If  one chooses a fixed initial state 
4)0 for the system (as in fig. 6), one has 

4)0(~0) = 4)0 (59) 

for all pure  states ~v of  the environment .  Let us now draw little circles a round  the 
north-  and  south  poles, respectively, and ask when and where a part icular  trajec- 
tory ~v passes these circles 13 (little circles are used, since an actual trajectory will 
usually not  reach a pole precisely). The respective time will be denoted by -r(~v) and 
called a stopping time [127]. Some of  the trajectories will first pass the circle near  
the nor th  pole, and some of  the trajectories will first pass the circle near  the south  
pole (here, we are not  interested in what  happens later on, though  that  would  be 
very interesting to discuss). It will be tried below to compute  the transi t ion prob-  
abilities, i.e., the probabili t ies to pass first the circle near the north-  or the south  
pole, respectively. 

Only a very simple example will be discussed, the technique being applicable to 
any stochastic dynamics  on the pure-state space 14 The example is given by the fol- 
lowing class of  (Stratonovich) stochastic differential equat ions 

dOt = - 2 ~  sin(0/) cos(0t) dt + 2v, sin(0t) o dWt ,  (60) 

with t~ and u being fixed positive constants.  Here 0 is one of  the spherical coordi-  
nates (for simplicity, it is assumed that  the problem does not  depend on the azimutal  
angle ~p), and  Wt is a one-dimensional  Wiener process [19,127]. More  general sto- 
chastic dynamics  could be formula ted  (adding, e.g., the experimenter 's  input  to the 
drift  t e rm - 2 ~  sin(0/) cos(0t) dt). Actually, all the variables also depend on the sto- 
chastic variable ~, which describes the state of  the envi ronment  (=  the pa th  of  the 
Wiener  process in the mathemat ica l  description). Hence, eq. (60) could also be 
wri t ten as 

13 Pure states of the environment and state- trajectories of the system are in one-one correspondence 
and hence denoted by the same variable w. 

14 This last part of the section could be skipped at a first reading. 
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dOt(aJ) = -2t~ sin{Or(W)} cos{Ot(w)} dt + 2usin{Ot(w)} o dWt(w). (61) 

An equivalent integral version ofeq. (61) is 

I' v~t(w) = v% + (-2~) sin{~,(w)} cos{O~(a~)} ds 

/o' + 2usin{G(~)} o dW,(a)). (62) 

Roughly spoken, these integrals are computed for every path ~. The "difficult" 
integral is the second one (with the Wiener process Wt), which for a Stratonovich 
stochastic differential equation is defined as the limit 

lim 2u ~-~ sin{0sk (w)} + sin{Gk+~ (w)} ( Wsk+, (w) - W~ k (w)) (63) 
~ 0  ~ 2 

k=l 

where Sk, k = 1, 2, 3, . . . ,  K, is a partition of the interval [0, t] with a maximal dis- 
tance 3 between the partition points [19]. In an It6 stochastic differential equation 
[19], on the other hand, this integral would be defined as 

K 

lim 2u ~ sin{G~(~)}( Ws~+, (w) - W~(~)). (64) 
6-+0 

k=l 

It is important to realize that the definitions in eqs. (63, 64) give rise to different 
results (since the Wiener paths are not regular enough). Physical reasoning leads to 
Stratonovich stochastic differential equation, which can be reformulated as an It6 
equation with different drift term [19]. The Stratonovich equation (60), for exam- 
pie, corresponds to the It6 equation 

dot = { - 2 ~  sin(0/)cos(tgt)+ 2v2 0sin(tgt)00 sin(0t)) dt + 2usin(G)dWt . (65) 

Reformulation as It6 equation has mathematical advantages: An It6 integral (as 
in eq. (64)), depending on t, is a martingale 15, whereas the corresponding Stratono- 
vich integral is not. 

For the particular values ~; = v = 1, the stochastic process (60) is the Gisin pro- 
cess [59], which has the correct transition probabilities ½(1 5: cos 0) for transitions 
to the poles, i.e., reproduces the transition probabilities of the projection postulate. 
Hence the class (60) of stochastic dynamics is not entirely artificial. Note that the 
transition probabilities discussed here are not transition probabilities between 
eigenstates of the Hamiltonian, but probabilities for an arbitrary pure initial state 
to get to some chosen region of the pure-state space (some region on the surface of 
the sphere in case of a two-level system). 

15 Here  martingales are always taken with respect to the time t and not  with respect to particle number  
No 
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Incidentally, the equation (60) can be transformed by introducing a new variable 
xt := - log tan(~0/) into 

dxt = 2~ tanh(xt) dt - 2u dWt, (66) 

which will be used for the mathematical discussion below (the heuristic physical dis- 
cussion will still be lead in terms of fig. 6). Note that for this stochastic integral 
equation the Stratonovich and It6 versions coincide (since the diffusion term does 
only contain the Wiener differential dWs, but not contain a function of Ws or a 
function of the solution xs of the stochastic equation). The mentioned transforma- 
tion changes the domain of definition from 0~<0~<Tr to -oo~<x~< + oo. Hence 
small circles around north- and south pole do now correspond to scalars x_ and x+, 
where x_ is very negative ("near" -oo)  and x+ is very positive ("near" +oe). The 
initial value of the trajectories considered (corresponding to the initial state on the 
sphere $2) will be denoted by x0. 

Consider again the stopping time ~-(w) introduced above. At time ~-(w), the tra- 
jectory 

tF--~ xt(~) (67) 

with initial value x0 reaches either x_ or x+, i.e., 

x~-(~,)(w) = x_ or x~(~,)(~) = x+. (68) 

Assume now that there exists a function 

h : R --~ R (69) 

such that 

h(x t )  = h(xt(oJ)) ,  t E R ,  (70 )  

is a martingale. Recall that a martingale 

t---* Z t  , 

Z, = Zt(w), (71) 

is a typical stochastic process in the usual sense, i.e., given the values Zsl (w) for 
some time Sl, the best prediction for Zs2, s2 > Sl is Zs~ itself. A Wiener process, for 
example, is a martingale. For a martingale h(x t ) ,  Doob's optional stopping theo- 
rem [127] implies that 

h(xo) = / h(x~(~)(w)) dP(w) (72) 
Js t  ates of the environment 

= h(x_)e{wlx~(~ ) (~) = x_) + h(x+)e{~lx~(~l (~) = x+}. (73) 

The equality in eq. (73) is an immediate consequence of eq. (68), with 
P{w]x~(,,) (w) = x_} and P{w[x~.(~)(w) = x+} being the transition probabilities to 
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(small circles around) the south- and the north pole, respectively, which sum up to 
one, 

P{wlx,(~)(co) = x_} + P{wlx,(~)(w ) = x+} = 1. (74) 

Denoting these transition probabilities by P_ and P+, one arrives at the simple 
result 

h ( x _ )  - h(xo) 
P+ = h(x_)  - h(x+) ' (75) 

p_ = h(xo) - h(x+) 
h(x_)  - h(x+) " (76) 

Therefore, slightly generalizing, i f  one has a real-valued function h on the pure-state 
space such that h(¢t) = h(¢t(ov)) 16 is a martingale (where ¢ is an element of the 
pure-state space), eqs. (75), (76) allow to compute the transition probabilities 
looked for. If the pure-state space is, for example, the surface $2 of the 3-sphere (as 
in fig. 3), one would have to find an appropriate function 

h :$2--~R (77) 

such that 

h(¢,) -- h(¢,(co)) (78) 

is a martingale. For the computation of transition probabilities, the function h 
has to be chosen in such a way that it is constant on the little circles around north- 
and south-pole (or conversely, these little "circles" have to be replaced by little 
curves around the poles, on which the function h is constant). 

Hence the problem is finally to f ind  appropriate real-valued functions h on the 
pure-state space such that h(¢t) = h(¢t(aJ)) is a martingale. Martingales are time- 
conserved quantities in the sense of eqs. (115), (116), or integrals of motion, which 
has already been used in eq. (72). In the individual formalism o f  quantum mechanics 
(with a stochastic dynamics on the pure-state space) martingales replace the usual 
"integrals o f  motion "such as, e.g., the energy or the angular momentum. Hence, for 
a complete description of the quantum processes arising during a spectroscopic 
investigation, one would need not only a stochastic dynamics (on the pure states) 
but also enough martingales to get a clear impression of the stochastic process and 
as a means for the computation of transition probabilities. 

Martingales can be found using It6's change-of-variable formula (see Appen- 
dix 2). Consider our example of a stochastic differential equation (eq. (66)), 

dxt = 2~ tanh(xt) dt - 2u dWt .  (79) 

1 6 T h i s  notation should only indicate that Ct and h(¢t) are functions of the state • of the envi- 
ronment. 
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Then by It6's formula (125), any differentiable function h: R -+ R fulfills 

h(x,) - h(xo) 

fo' i f '  = h'(x,){2~tanh(xs) ds - 2u dW,} +~ h"(xJ4u 2 ds 

/o /o' = {2~ tanh(x,) h'(x,) + 22h"(x,)} + (-2u)h'(x,) dW,. (80) 

Since 

o'(-2u)h'(x,) dWs (81) 

is a martingale,  it is clear that the h(xt) = h(xt(co)) is a mar t inga le / f  

h"(x) +-~ ~ tanh(x) h'(x) = 0, x e R ,  (82) 

holds. Therefore the function 

h(x) = foXexp{ foY-~2tanh(z)dz} dy (83) 

foX(cosh y) -~/~ dy (84) 

is a solution leading to a martingale h(xt) = h(xt(w)) .  In the case of  the Gisin pro- 
cess (with ec = u = 1) one arrives at 

h(x) = t a n h x ,  (85) 

and therefore gets transition probabilities (see eqs. (75), (76)) 

tanh(x_) - tanh(x0) 
P+ = tanh(x_) - tanh(x+) ' (86) 

tanh(x0) - tanh(x+) 
P -  = tanh(x_) - tanh(x+) " (87) 

Since the function tanh converges quickly to +1 for x--* ± oe, these transition 
probabilities (to reach small circles around the poles) converge quickly to 

1 ± tanh x0 1 4- cos t9 
- ( 8 8 )  

2 2 
and hence reproduce the projection postulate. This is not  the case for other values 
oft~/u 2. For  t~/u 2 = 4, e.g., one arrives at 

h(x) = _1 tanh 3 x + tanh x,  (89) 

which gives rise to transition probabilities 
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2 4- 3 cos 0 q: cos 3 z9 
4 ' (90) 

differing from the "correct" transition probabilities in eq. (88) up to 10% (depend- 
ing on the initial state). 

To get results about the time necessary for a transition, similar techniques can 
be applied. One may, for example, consider functions h : R 2 ---* R such that 

h(x,, [x, x]t ) = h(xt(w), [x, x],(w)) (91) 

is a martingale (where [x, x] is the Doob-Meyer  bracket, introduced in Appen- 
dix 2). 

The main problem with this and other, more involved, computations is that one 
needs numerical capacity to solve (usual, i.e., non-stochastic) partial differential 
equations. 

Summarizing: It is desirable to have a dynamical theory on the level of pure 
states, not only encorporating the Hamiltonian dynamics of the system considered, 
but encorporating also external stochastic perturbations. The maximum-entropy 
ensemble (corresponding to a thermal non-pure state D~) can be explained by such 
dynamical considerations. Transition probabilities and transition times can be 
computed using martingale theory (and numerical procedures to solve partial dif- 
ferential equations). Martingales are conserved quantities, replacing the usual 
conserved quantities such as energy, angular momentum, etc. Given such a dyna- 
mical approach on the pure-state level, interesting questions to solve would be: 

• How long does it take for the symmetric ground state ofa  chiral molecule to de- 
cay into left- and right-handed (or other) states? 

• Can one distinguish between the Bohr-Einstein and the von Neumann point 
of view, respectively? Can one find certain situations (e.g., large level splitting), 
such that at least one of them is "correct?" 

9. T h e  structure of single molecules 

Let us again consider our previous example, namely an ammonia-type molecule, 
or the joint system {ammonia-type molecule & radiation field}, or the joint system 
of an ammonia-type molecule with another type of environment. We are interested 
in thermal equilibrium states, and try to explain the kind of phase transition alluded 
to in table 1. 

Let us first recall the prescription given by the standard formalism of quantum 
statistical mechanics [33,117]. This prescription would read as follows: "Try to con- 
struct different thermal states with different expectation values of an order param- 
eter." Various reasons can be given to show that this prescription cannot work for 
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our problem (where the order parameter can be thought to be the coordinate of 
the inversion oscillation): 

• I f  the prescription worked, then one would end up with chiral strictly stationary 
thermal states with density operators D~,L and D~,R. No racemization would 
take place, contrary to experimental experience. 

• For finitely many modes of the field, the prescription does never lead to differ- 
ent order parameters (say for left- and right-handed thermal states). Consider- 
ing, in particular, an isolated molecule (which consists of finitely many 
particles and therefore has only finitely many degrees of freedom), the prescrip- 
tion does not work. Reason: for finitely many degrees of freedom there exists ex- 
actly one thermal non-pure state (/3-KMS state [33]) for every inverse 
temperature/3, namely that one with density operator D~. This argument is si- 
milar to the result in eq. (24) in the discussion of the Born-Oppenheimer ap- 
proximation. Note that the uniqueness of the thermal state is independent of 
symmetry considerations (i.e., is also true if the weak neutral current terms are 
taken into account). 

• In the statistical approach, one tries to perturb the symmetry of the Hamilto- 
n ian  by some small "external" influence, such as an external magnetic field B, 
and considers the zero-field limit of the density operators 

D def ~,pos = lim DE,s , (92) 
B--* +0 

D def ~,neg = lim D~,s. (93) 
B--~ -0 

If the two density operators DB,pos. and DB,neg. do not coincide 17, o n e  has con- 
structed the two different thermal non-pure states looked for. Unfortunately, 
for finitely many degrees of freedom, this "trick" does not work, i.e., leads to 
identical and not to different results for D3,pos. and D~,neg.. 

For infinitely many degrees of freedom, e.g., with consideration of all modes 
of the radiation field, different thermal states (with identical inverse tempera- 
ture) can exist [33]. But Arakiperturbation theory [33] shows that a change of 
the level splitting (as in table 1) does not lead to a phase transition. Either one 
has handed thermal states for all ammonia-type molecules or one has no 
handed thermal states for all ammonia-type molecules [5,49-52]. Araki pertur- 
bation theory for thermal states is mathematically rigorous, in contrary to 
usual perturbation theory as it is used for pure eigenstates of a Hamiltonian. 
Incidentally, for ground states (i.e., for temperature zero) the situation is differ- 

17 Density operators are used here, even if this is slightly incorrect. One should formulate everything 
in terms of  non-pure states. 
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ent [6-8,95,123,124]. These interesting matters are not discussed in the present 
paper. 

• Even if the prescription would work for infinitely many degrees of freedom, 
one would at least expect that it works for a large butfinite number of  degrees of  
freedom, too. This is not the case. In algebraic quantum mechanics, superselec- 
tion rules are equivalent to classical observables and arise after the limit 
N--+ oo of  particle number going to infinity. For finite N, the superposition 
principle is fully valid. 

• Statistical quantum mechanics could also be used to exclude the Born-Oppen-  
heimer description or to deny the existence of isomeric molecular species. Con- 
sider, e.g., different isomeric molecules. These isomeric molecules are 
described by the same Hamiltonian (since the latter depends only on the num- 
ber of electrons and the charges of the nuclei). Hence the isomeric molecules 
have the same thermal state (because the thermal state is determined by the Ha- 
miltonian). This unique thermal state gives unique expectation values for the 
position operators of the nuclei, and even zero expectation values as in eq. (24) 
if the Hamiltonian is symmetric under space inversion. From a physical or 
chemical point of view, this line of arguments, though formally correct, gives 
rise to strange results, since it excludes nuclear frame, chirality and isomeric 
molecular species as well as all other approximate classical structures. 

Therefore the usual statistical formalism of quantum mechanics as codified in alge- 
braic quantum mechanics [69,96,99,117,126] does not lead to classical structures 
andphase transitions for systems with finitely many degrees of freedom. 

Remark 
Nevertheless, classical observables can be introduced in algebraic quantum 

mechanics by group-theoretical methods [2,3] without ever thinking about the 
number of degrees of freedom. It is an enormous achievment of algebraic quantum 
mechanics that both-classical and quantum mechanics-can be treated by one and 
the same formalism. Algebraic quantum mechanics is also helpful (in a mathemati-  
cal sense) for the individual setting of quantum mechanics as developed in the pres- 
ent paper. The critique here refers to the construction of classical observables by 
limits. Incidentally, in W*-algebraic quantum mechanics thermal limit situations 
are usually described by type III-W*-algebras [33]. But pure states on type-Ill  W*- 
algebras do not even fulfill the Jauch-Piron condition [4,37,64] and hence are very 
pathological. Therefore the respective thermal state (= ~-KMS state) should not 
be decomposed into pure states at all. If one wants to decompose the thermic state 
into pure states (in a situation with infinitely many degrees of  freedom), one must  
use a C*-algebraic theory. For such a C*-algebraic theory of  thermal states (of sys- 
tems with infinitely many degrees of freedom) one could try to understand limits 
N -+ oo. On the level of ensembles ofpure states such a limit makes sense if the max- 
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imum-entropy ensembles are used. It does usually not make sense if the decomposi- 
tion into eigenstates of the Hamiltonian is used. 

Looking at ammonia-type molecules, the main problem in usual statistical quan- 
tum theory is again that a thermal non-pure state Da cannot be uniquely decom- 
posed into pure states (see section 2). One and the same thermal state D~ can be 
decomposed differently into pure states, such that the distribution of the inversion 
coordinate q is, e.g., centered around q = 0 or, this is another possibility, is centered 
around two different values +q~. These two possibilities are sketched in fig. 8. 
The second one (with two maxima) refers to a situation with an approximate classi- 
cal structure (where, of course, also the dynamics has to be taken into account, see 
section 10). A decomposition of D~ into symmetry-adapted eigenstates (of the 
Hamiltonian) would lead to a b-distribution p concentrated at q = 0. Since, in sta- 
tistical quantum mechanics, all these different decompositions are considered as 
equivalent, no approximate classical structures can be introduced. 

Incidentally, the same problem arises with isomeric molecular species. Having 
the same thermal non-pure state D~, one can consider decompositions leading 
indeed to different isomeric species (illustrated on the right part of fig. 8), or 
decompositions into eigenstates (which are superpositions of the two potential iso- 
meric species, see left part of fig. 8 and eq. (24)). 

Let us now pass in review the approach advocated in the present paper. It has 
been argued that the robust thermal state D~ should be decomposed in such a 
("robust") way into pure states that the resulting ensemble has maximum entropy 
with respect to equipartition o f  pure states. Hence from the very beginning, the 
resulting ensemble of pure states is uniquely determined. As shown in section 6, 
such a maximum-entropy ensemble has a tendency to be concentrated on different 
parts of the pure-state space (because that increases the entropy defined in 
eq. (27)). Correspondingly, the expectation values of molecular coordinates (an 
inversion coordinate q, for example), can be concentrated on different values of q 
(e.g., two values +q~, see fig. 8). For the sequence monodeuteroanilin ---* ammonia 

. . .  --~ aspartic acid of molecular species, one expects to get distributions of 
the inversion coordinate q, which are first concentrated around q = 0 (for mono- 
deuteroanlinin and ammonia), but develop two concentration points ±q~ for prop- 

q "q 

Fig. 8. Different distributions p of the inversion coordinate q in an ammoniatype molecule, referring 
to different decompositions of the same thermal nonpure state into pure states. This figure refers to 
some fixed inverse temperature. The figure corresponds to fig. 4 and is not based on a calculation. For 

chiral molecules, the valuep(q = 0) is expected to be very low. 
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erly chiral molecules, such that for smaller level splitting one gets a better concen- 
tration (finally ending up with two b-peaks). 

Remark 
If this heuristic idea is correct, one can introduce an entropy Sleve I splitting (in ana- 

logy to the entropy Smean for a strict classical observable as the magnetization), 
describing how fast superpositions of left- and right-handed states "die out" with 
decreasing level splitting of the molecular species (see table 1). 

Hence in the approach of this paper, there is no principal difficulty to get approx- 
imate classical observables and structures as well as approximate symmetry reduction 
already for finitely many degrees o f freedom. Here "symmetry-reduction" means 
that the symmetry of the pure states in the maximum-entropy ensemble is lower 
than the symmetry of the non-pure thermal state D o . If, for example, the thermal 
non-pure state describes a racemate, then the maximum-entropy decomposition 
consists mainly of left- and right-handed states and not of their superpositions. 
Nevertheless, the superposition principle is still fully valid. Superpositions of left- 
and right-handed states exist, but may be unstable under external perturbations. 

The pure states in a maximum-entropy ensemble (corresponding to some ther- 
mal non-pure state) are usually non-stationary. That is perfectly ok.: If one consid- 
ers a pot of water described by a thermal non-pure state, then everybody wants 
the actual pure state of the water to be nonstationary, because "the water molecules 
in the pot move." Correspondingly, for molecules one cannot expect that only sta- 
tionary states (eigenstates of the Hamiltonian) play a role. It would, for example, 
be interesting to know how the states of ammonia are distributed in a maximal 
entropy ensemble of pure states (for a given temperature). In microwave spectros- 
copy of ammonia, for example, different heuristic ideas are used: sometimes the 
problem is treated quantum-mechanically on the basis of eigenstates, and some- 
times more classically (in the sense of a back and forth tunneling state / an inverting 
pyramid). 

Obviously, it is quite difficult to work out this individual setting of quantum 
mechanics in full detail. A full understanding (and perhaps improvement) of the 
Born-Oppenheimer picture, for example, will be a hard piece of work (one should, 
in particular, compare the maximum-entropy decomposition of the thermal non- 
pure state D~ with that decomposition of D~ which gives the best-localized nuclei in 
eq. (32); both mentioned decompositions are into nonstationary states). 

The nuclear frame of a molecule is definitely an approximate classical observa- 
ble, i.e., superpositions survive (even when the radiation field with all its infinitely 
many modes is encorporated). Hence an entropy function Smean as for a magnet 
(describing how fast certain superpositions "die out" with increasing number of 
spins; see fig. 5) does not exist. Nevertheless similar (though a little bit more com- 
plicated) entropy functions can be introduced, describing how fast the distribution 
PN of the inversion coordinate q (referring to N modes of the radiation field) con- 
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verges to the distributionpoo with an increasing number N of modes of the radiation 
field. In large-deviations theory, this sort of entropy is called a level 2-entropy, as 
opposed to a level 1-entropy in fig. 5. 

10. Ergodicity breaking and dynamical classical observables 

It has been argued in section 9, that two isomeric molecular species are described 
in usual statistical quantum theory by the same Hamiltonian and hence by the 
same thermal non-pure state D/~. A similar problem arises with oppositely handed 
chiral molecules. Hence statistical quantum theory, strictly spoken, cannot explain 
spectra of isomeric or handed molecules, since thermal handed states D~,L and 
D/~,R or thermal states D/~,iso for a particular isomer are undefined. These thermal 
states for handed molecules or particular isomers are necessary to discuss spectros- 
copy via response theory (as discussed in section 3). 

One could use the Born-Oppenheimer approximation to define thermal states 
D~,L, D/~,a and D/3,iso: to this end, one must determine the "localized eigenstates" 
from a chosen minimum of the BO-potential (see section 4) and mix them using the 
appropriate Boltzmann factors. Here we shall choose a more direct and more com- 
prehensible way of introducing thermal states D~,L, D/~,a or D/3,iso, applicable not 
only to molecules, but to arbitrary systems. It works with timescales, and it would 
actually be interesting to understand the connection of the present approach with 
time-dependent Born-Oppenheimer approximation. 

Note that for the example of a magnet (see fig. 7) consisting of finitely many 
spins the situation is analogous to that one of molecules before: it is no problem to 
write down the thermal state Da for the magnet, but it is a problem to define thermal 
states D/~,pos. and D/3,neg. with positive or negative permanent magnetization, respec- 
tively. 

Using the individual setting of quantum mechanics (as advocated in the present 
paper), it is no problem to introduce thermal states like D/~,L and D/~,R. The follow- 
ing "recipe" is ad hoc, but it will become clear later on that this adhoc aspect cannot 
be avoided. The recipe runs as follows: Take the thermal nonpure state D/~ and 
decompose it according to the maximum-en tropy principle into an ensemble #:~,max 
of pure states, 

Tr(DflT) = f a~latPesUr ~ dp(T)lzfl,max(d~). (94) 

Suppose now that an approximate classical observable arises, i.e., that the distribu- 
tion of the expectation values of the inversion coordinate ~ (with respect to the 
ensemble #~,max) has two sharp peaks (as in the right part of fig. 8). Then D/~,L and 
D/~,R are defined as 
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f{OlO(O) ~< o} ~b(T)/zfl,ma x (dq~) 
Tr(D~,LT) = f{el~(O) ~<0} ]'Z/~,max(d(~) (95) 

f{,~l,P(O) ~>0} ~b(T)#~,max (d~b) 

Tr(D~,RT) = f{~[,(O)>~o} #~,max(dff) (96) 

The denominator in these equations is introduced to get normalized density opera- 
tors, i.e., density operators D with Tr(D) = 1. 

In plain words the recipe can be described as follows: The maximum-entropy 
ensemble corresponding to the overall thermal non-pure state D~ is divided into 
two parts, namely into those states having positive expectation value of the inver- 
sion coordinate 0 (these are the "right-handed" states in the ensemble) and those 
having negative expectation value of the inversion coordinate 0 (these are the "left- 
handed" states in the ensemble). These two respective parts are then integrated up 
to the density operators DB,R and DB,L. 

Remark 
The spectral decomposition of, say, the density operator D~,R can be expected 

to give, roughly, the localized eigenstates of the respective Born-Oppenheimer 
approach. This is the way how the Born-Oppenheimer approach could perhaps be 
understood. One could also investigate, how the overall thermal non-pure state 
Da can be decomposed into pure states in such a way, that the nuclei are localized as 
much as possible (that is, not us the maximum-entropy decomposition). The proce- 
dure is always the same: One takes the statistical information, i.e., the overall ther- 
mal state, and uses a particular decomposition of this overall thermal state to get 
information about the pure states. In particular, one would like to know if a mole- 
cule has a nuclear frame, or chirality, or isomers, etc. This information about the 
pure molecular states can then be taken as a starting point for interpretation of sin- 
gle-molecule spectroscopy. In turn, one would like to get information on the pure 
state of a molecule from single-molecule spectroscopy. 

The whole matter is now considered from a dynamicalpoint o f  view (see sections 
7 and 8): Under the influence of external perturbations, the pure states of a mole- 
cule develop in a stochastic way. The stochastic dynamics on the pure-state space is 
called ergodic if, starting from some initial state 4~0, all other pure states can be 
reached by the stochastic dynamics (for mathematical definitions of ergodicity, see 
ref. [45]). For systems with a partial classical structure (chirality, isomerism, magne- 
tization), ergodicity effectively breaks down (with respect to the entire state space): 
Starting with a left-handed initial state q~0 of a chiral molecule, for example, the sto- 
chastic dynamics will not leave the subensemble of left handed states (for a long 
time). Hence, the maximum-entropy ensemble corresponding to the "global" ther- 
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mal density operator D~ will split up into subensembles, which are structurally 
stable for long times. On the subensembles, the dynamics still acts ergodically. The 
structurally stable subensembles (for, e.g., left- and right-handed states) behave 
as attractors, whereas "forbidden" superpositions (of states taken from different 
structurally stable subensembles) are transient states, finally ending up in one of 
the structurally stable subensembles. 

In this way, density operators like Dr,L, DB,R and D~,is o can  also be introduced 
by dynamical arguments and the respective approximate classical structure gets a 
dynamical touch 18. These density operators correspond to (effectively) stationary 
distributions of pure states (i.e., to stationary measures on the attractors). 

In this dynamical point of view, it becomes again clear that a strict distinction 
between different isomers or differently handed states is not possible (and not even 
desirable). There are always some "intermediate", transient states "in between dif- 
ferent possibilities" which cannot clearly be assigned to one of them. Think again 
of left- and right-handed states: one could try to determine the geometry of the tran- 
sition states during racemization, i.e., the subensemble of states having expectation 
value of ~ in an interval around q = 0. In a way these states do neither belong to 
the left- nor to the right-handed states. 

Recall that one interesting point with chirality is to understand why superposi- 
tions of left- and right-handed states are unstable under external perturbations. 
The idea advocated in this paper is that the maximum-entropy decomposition of 
the thermal state D;~ gives rise to an ensemble/Zmax which is already concentrated on 
left- and right-handed states, whereas the probability to find a superposition of 
left- and right-handed states is very very low (with respect to ~max, in the right part 
of fig. 8, the value of the density at q = 0 is nonzero, but very small). Furthermore, 
it has been argued in section 7 that the stochastic dynamics of the pure states finally 
leads (dynamically) to the maximum-entropy ensemble #max- Hence the idea is 
that superpositions of left- and right-handed states decay quickly into either a left- 
or a right-handed state. But this needs further investigation even in the case of 
mean-field models. In the present section, the problem is no more to show the 
instability of certain superpositions (this is already settled with the determination 
of/Zmax), but to show that the ensemble P-max effectively decays into two (or more) 
dynamically separated subensembles. Starting with a superposition of states from 
the subensembles, the stochastic dynamics is expected to lead quickly (in time) into 
one of those subensembles; and once being in a particular subensemble, the state 
has almost no chance to get into another subensemble (that is the timescale argu- 
ment, corresponding to ergodicity breaking). Hence again: One expects symmetry 
reduction (or symmetry breaking) by introducing the maximum-entropy ensemble 
p ¢ ~  (of pure states) and ergodicity breaking by split of/~max into two or more struc- 
turally stable subensembles, in which ergodicity is retained. 

is For approximate classical observables with continuous spectrum, the argumentation needs some 
refinement, since then the approximate classical value changes with time. 
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Introducing density operators for isomers can be done in the same way, the 
only difference being that the original "global" ensemble of pure states (corre- 
sponding to the overall density operator D~) is not partitioned into two parts but 
into as many parts as isomers exist. Again two problems come into play: Why are 
superpositions of isomers unstable and why is a particular isomer stable dynami- 
cally. Like in the case of chirality one expects symmetry breaking when introducing 
the maximum-entropy ensemble/~a,  (of pure states) and ergodicity-breaking by 
split of/~max into two or more structurally stable subensembles. The symmetry 
breaking corresponds to the instability of superpositions of isomers whereas the 
ergodicity-breaking corresponds to the structural stability of isomers. 

"Isomerism" is, of course, a classical concept, which has been brought into dis- 
cussion here on a heuristic level. The final goal would be to understand and derive 
isomerism as an (approximate) classical structure without using any previous 
chemical wisdom (and starting from an entirely quantum-mechanical descrip- 
tion). 

Summarizing: Statistical quantum theory imposes too excessive conditions for 
symmetry breaking and formation of classical structures. In individual quantum 
mechanics approximate symmetry breaking and approximate classical structures 
arise. Strictly spoken, chiral molecules, nuclear frames and molecular isomers do 
not exist in statistical quantum mechanics. In individual theory, an element of fuz- 
ziness comes in which allows introduction of molecular isomerism and the other 
mentioned concepts. 

11. Concluding  remarks  

Statistical quantum mechanics works surprisingly well, even beyond its scope. 
Typically, results derived from response theory (see section 3) are applied with 
good success even for spectroscopy of single molecules. 

Nevertheless, some important points in the statistical approach cannot be 
accepted without discussion: 

The thermal density operator D~ must be carefully chosen. Just from the statisti- 
cal quantum-mechanical formalism alone, it is by no means clear how the thermal 
state of some isomer or the thermal state of a left- or right-handed molecular species 
could be defined. As long as the symmetry is not broken "by hand", neither nuclear 
frame, nor handed molecules, nor molecular isomers appear (see eq. (24) and the 
discussion concerning uniqueness of the thermal non-pure state in section 9). In the 
present paper, "symmetry breaking" is derived from the dynamical behaviour, a 
point of view which was already used in Hund's paper on chirality [68]. The point 
here is that external perturbations are explicitly discussed (see sections 7 and 8) and 
that stability under external perturbations necessitates a particular (uniquely deter- 
mined) decomposition of the thermal non-pure state, namely the maximum- 
entropy ensemble of pure states corresponding to D~. 
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This approach allows to explain that approximate classical structures exist 
though the superposition principle of quantum mechanics is still fully valid. In par- 
ticular, the argument that the Stone-von-Neumann theorem [111] excludes classi- 
cal structures for systems of finitely many degrees of freedom, is relativized: the 
Stone-von-Neumann theorem indeed excludes strict classical observables but it 
does not exclude approximate classical observables. Furthermore, the large-devia- 
tion considerations in section 6 show how an approximate classical observable 
becomes a strict classical observable in the limit of infinitely many degrees of free- 
dom. This limit gives rise to a kind of caricature: The superposition principle is 
restricted to sectors and does not hold universally any more. 

In the present approach, eigenstates of the Hamiltonian do not play a predomi- 
nant role, but are not excluded either: Only a detailed investigation of maximum- 
entropy ensembles or the stochastic dynamical behaviour of some molecule (prefer- 
ably coupled to the radiation field) will finally clarify this question. It might well 
happen, that the particular context of an empirical situation (level splittings, etc.) 
determines if eigenstates of the Hamiltonian do indeed arise or not. The sequence 
of molecular species discussed in Table 1 suggests that "overall eigenstates" (such 
as the ground state of an ammonia-type molecule) may be unstable and "disap- 
pear" when an approximate classical structure (such as handedness) is generated. 

Another point should be carefully investigated: In response theory it is assumed 
that the expectation value of the output observable (see eq. (11)) can be measured 
without perturbing the state of system. As long as the state of the system differs 
only slightly from the thermal non-pure state D•, this is no big problem. But as 
soon as one starts from a pure state for an individual molecule and tries to apply 
response theory, things get much more delicate. The fact that entirely different 
heuristic approaches exist (such as the Bohr-Einstein point of view and the von 
Neumann point of view) to describe the individual behaviour of molecules (on the 
pure-state level), should be understood as a warning sign: the individual behaviour 
of molecules is not clear at all. 

Probably, the usual input-output scheme of general system theory should be 
modified slightly: not only the traditional input -b(t)B used in eq. (5) but also the 
influence of the measuring device on the state of the system should be considered 
as input, the output staying the same as usual. 

Such a stochastic quantum-mechanicalfiltering theory has not yet been devel- 
oped. Certainly, it should fit into the response theory described in section 3. There, 
the thermal non-pure state D~ can be replaced by the maximum-entropy ensemble 
of pure states, and the individual dynamical behaviour of pure (initial) states is 
expected to add up to a reasonable dynamics of the corresponding density operator. 
In such an individual description, the structurally stable subensembles correspond- 
ing to molecular isomers or handed species will automatically be worked in. Hence 
slightly oversimplified dynamics such as given by the Karplus-Schwinger equation 
(4) will split up into several subdynamics (i.e., dynamics on the subensembles). 
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Appendix  1 

STATES OF A TWO-LEVEL SYSTEM 

Each pure state of a two-level system is specified by a normalized vector in a 
two-dimensional Hilbert space 

, c l , c 2 e C ,  Ic112+1c212 1. (97) 
C2 

Observables, on the other hand, are represented by 2 x 2-matrices, as, for example, 
the Pauli matrices 

d=ef(0 10) d=ef(0i ; i )  def(10 0 ) (98) 
Crx 1 , cry , o ' z =  - 1  " 

Two vectors (1 and ~2 describe the same state if the respective expectation values 
coincide, 

(gllTg ) = (gEl T{2). (99) 

for arbitrary 2 x 2-matrices T. This is the case if and only if there is some complex 
number A such that ~1 = A(2. 

A density-matrix is a positive matrix D with trace 1, 

dl 1 d12 ) def dl 1 + d22 = 1. 
Tr(D) = T r  d21 dEE (100) 

Sometimes a pure state with state vector ( is replaced by a corresponding density 
matrix D~ fulfilling 
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Tr(D~T) = (~[T~). (101) 

The density matrix De gives rise to the same expectation values as the state vector 
and hence contains the same information. In Dirac bra-ket notation one has 

De = IO<~l • (102) 

Mixing of pure states (j with appropriate mixing coefficients Aj results in the 
expectation values for arbitrary 2 x 2-matrices T: 

Aj< ~I T~j ) . (103) 
j=l,2,-. 

Here the Aj are (finitely or infinitely many) positive coefficients fulfilling 

Aj--- 1. (104) 
j=l,2,... 

Mixing of 50% left- and 50% right-handed states, for example, would.need two 
coefficients A1 = A2 = ½. The mixing process (103) gives rise to a non-pure state 
with density matrix 

D = ff_~ AjD¢,. (105) 
j=l,2,... 

All density matrices arise in this way as a mixture of pure states. Hence the set of 
nan-pure states corresponds precisely to the set of all density matrices. In Dirac bra- 
ket notation, the density-operator D of the mixing process (103) is given as 

Ddef ~ ~jlej)(¢jl" (106) 
j=l,2,.- 

Every state which is not pure, i.e., not of the form (102), can be decomposed 
into pure states. This decomposition can be done in infinitely many different ways. 
To illustrate this fact, a representation of the state space for a two-level system 
(including all density operators) will be given. Every density-operator D can be spe- 
cified by three real numbers, namely the expectation values 

bk def Tr(Dak) (107) 

of the Pauli matrices, in such a way that 

O = ½(1 + blal + b2cr2 + b3ty3) (108) 

holds. Conversely, an operator of type (108) is a density operator (corresponding 
to a non-pure state) if and only if the real numbers bl, b2, b3 fulfill 

1bll 2 + Ib2l 2 + [b312 1. (109) 
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Hence the state space of a two-level system is (convex) isomorphic to the sphere in 
real three-dimensional space. The pure states correspond precisely to the points ful- 
filling 

Ibll 2 + Ib212 + Ib3l 2 = 1, (110) 

and therefore to points on the surface $2 of the sphere. Spin-up and spin-down states 
correspond to the poles of the sphere. In this representation the mixing process 
can easily be visualized, since mixing of density matrices corresponds precisely to 
mixing of the respective 3-vectors defined in eq. (107). The mixing process of 
eq. (103), for example, corresponds to 

bk = ~ .~jbj,k, k =  1,2,3. (111) 
j=l,2,... 

Every non-pure state with density operator D (i.e., every interior point of the 
sphere) is of the form in eq. (106). Nevertheless there exist more general mixtures/ 
decompositions 

D = f s  [~o,O)(~o,o[f(zg, ~) sinO dO d~b (112) 
2 47r ' 

where spherical coordinates have been used. 

Appendix  2 

RULES FOR MARTINGALES 

DEFINITION 
Consider a probability space (~2,P) possessing an increasing family of or- 

algebras 

~:t, t >>.O . (113) 

Then a martingale is defined as a progressively measurable, P-integrable and con- 
tinuous stochastic process 19 Zt : Zt(~v), ~v~O, t>~O, such that the conditional 
expectations E P[Zt215"t~] fulfill 

EP[Zt2l~:tl] = Ztl  , O<~tl "( t2 .  (114) 

For many purposes, it is not necessary to understand this mathematical definition 
in detail. The important consequences are: 

19 Again the notation used is not correct. See the corresponding footnote in section 8. 
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The  integrals over the stochastic variables Zt's are independent  of  t ime 20 

/~ Zt(w)e(dw) = fS'2 Zo(w)P(dco), t>~O, (115) 

• I f r  is a s topping t ime (see section 8), then 

/o  Zr(~)(w)P(dw) = / ~  Zo(w)P(dw) . (116) 

This is a consequence of  Doob ' s  opt ional  s topping theorem [127]. 

Hence  mart ingales  are conserved quantities, even when they are t ime-dependent  
(as functions).  It is impor tan t  to be able to construct martingales.  This can be done  
by use of  I t6 's  formula  (see below). 

Some few rules [44,47] and notat ions  are necessary to deal with a set o f d  mar t in-  
gales Zt := (Z), Zt2, -- -, Za), e.g., Wiener processes (W], Wt2, .. ., Wt a) for different 
coordinate  directions 1, 2, . .- ,  d. Note  that  mart ingales depend on the " t ime"  t 
and  the stochastic variable w (the "pa th") .  In the following, all the stochastic inte- 
grals are I t&integrals :  

• The  joint  quadrat ic  variat ion [X, Y] of  two stochastic processes Xt = Xt(w) 
and Yt = Yt(w) is defined as the stochastic process 

/0' /0' [X', r ] tded  x t r t  - x o r  0 - Xsdrs - r ,  d X s .  (117) 

The  bracket  [X, Y] is called the D o o b - M e y e r  bracket  of  the stochastic pro- 
cesses X and Y. It is symmetr ic  

[X, Y] = [Y,X]. (118) 

A stochastic process X is said to be of  finite variat ion if the paths  s ~ Xs(w) 
are of  finite var ia t ion for every w on every finite t ime interval [0, t]. In this case 
the D o o b - M e y e r  bracket  with any other stochastic process Y vanishes, 
IX, r ]  = O. 

For  arbi t rary stochastic processes, the D o o b - M e y e r  bracket  [X, Y] = [X, Y], 
is of  bounded  variat ion (and hence not  a martingale).  The D o o b - M e y e r  
bracket  for independent  Wiener  processes (W, ~, W,2, .- ., W, a) can be compu ted  
to give 

[W i, wJ]t ~- tt~ij , (119) 

with 8/j being the Kronecker  delta. 

20 Here martingales are always taken with respect to the time t and not with respect to particle number 
N. 
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The Doob-Meyer  bracket can be dealt with by observing that 

(120) 

* I f X a n d  Y are martingales, then 

XtYt - [X ,  Y], (121) 

is again a martingale. The process (WtJ) 2 - t, for example, is a martingale. 

• I f F  = F(w) is a real-valued function and i fZ  -=- Zt is a martingale, then the sto- 
chastic process 

fO t V(w) (122) dZ, 

is a martingale (with respect to t). 

A semimartingale Y is defined to be the sum of a martingale Z and a process 
of finite variation A, 

Yt = Z t  -q- At. (123) 

Usual functions are of finite variation. The drift part in eq. (60), for example, 
is of finite variation, whereas the diffusion part is a martingale. Hence the solu- 
tion ofeq. (60) is a semimartingale. 

It6 's change of variable formula: Given a differentiable function 

f :  Ra--~ R (124) 

and d continuous semimartingales J(~, Xt2,. • -, Xt a, then 

f(Xt) - f(Xo) 

= Z fo Df(Xs) dX j + Di~(Xs) a[Xi, XJ l . 
i = I  = = 

(125) 

Here D.f is the first partial derivative of the funct ionf  with respect to the i-th 
variable, and D J  is the second partial derivative o f f  with respect to the ith and 
j th  variables. Note that It6's formula is quite general. If, for example, a func- 
tion h depends on two variables, and if Wt is a Wiener process, then eq. (125) 
implies that 
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h(Wt, t) - h(W0, 0) 

f0  t f0  t f0  t = Olh(Ws, s) dWs + O2h(Ws, s) ds+ Ollh(Ws, s) ds, (126) 

because [His, s] = 0 and [ Ws, His] = s (see above). Since the integral 

ot Dlh(Ws,s) dW~ (127) 

is a martingale, it follows that h( Wt, t) is a martingale, if 

D2h + Dllh = 0 (128) 

holds. 
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